首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model for microstructure in pulsar radio emission. We propose that micropulses result from alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify the curvature of the field lines significantly. This, in turn, affects strongly fulfilment of the resonance conditions necessary for the excitation of radio waves. The time-scale of micropulses is therefore determined by the wavelength of the drift waves. The main features of the microstructure are naturally explained within the framework of this model.  相似文献   

2.
3.
Propagation of radio waves in the ultrarelativistic magnetized electron–positron plasma of a pulsar magnetosphere is considered. The polarization state of the original natural waves is found to vary markedly on account of the wave mode coupling and cyclotron absorption. The change is most pronounced when the regions of mode coupling and cyclotron resonance approximately coincide. In cases when the wave mode coupling occurs above and below the resonance region, the resultant polarization appears essentially distinct. The main result of the paper is that in the former case the polarization modes become non-orthogonal. The analytical treatment of the equations of polarization transfer is accompanied by numerical calculations. The observational consequences of polarization evolution in pulsar plasma are discussed as well.  相似文献   

4.
5.
6.
7.
8.
Pulsar radio emission is modelled as a sum of two completely polarized non-orthogonal modes with the randomly varying Stokes parameters and intensity ratio. The modes are the result of polarization evolution of the original natural waves in the hot, magnetized, weakly inhomogeneous plasma of the pulsar magnetosphere. In the course of the wavemode coupling, the linearly polarized natural waves acquire purely orthogonal elliptical polarizations. Further on, as the waves pass through the cyclotron resonance, they become non-orthogonal. The pulse-to-pulse fluctuations of the final polarization characteristics and the intensity ratio of the modes are attributed to the temporal fluctuations in the plasma flow.
The model suggested allows one to reproduce the basic features of the one-dimensional distributions of the individual-pulse polarization characteristics. Besides that, the propagation origin of the pulsar polarization implies a certain correlation between the mode ellipticity and position angle. On a qualitative level, for different sets of parameters, the expected correlations appear compatible with the observed ones. Further theoretical studies are necessary to establish the quantitative correspondence of the model to the observational results and to develop a technique of diagnostics of the pulsar plasma on this basis.  相似文献   

9.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

10.
It is shown that induced Raman scattering of electromagnetic waves in the strongly magnetized electron–positron plasma of pulsar magnetospheres may be important for wave propagation and as an effective saturation mechanism for electromagnetic instabilities. The frequencies at which strong Raman scattering occurs in the outer parts of a magnetosphere fall into the observed radio band. The typical threshold intensities for the strong Raman scattering are of the order of the observed intensities, implying that pulsar magnetospheres may be optically thick to Raman scattering of electromagnetic waves.  相似文献   

11.
12.
Gamma-ray emission in pulsar magnetospheres is attributed to synchrotron radiation, which tends to decrease the pitch angle of the particle, being balanced by plasma processes tending to increase the pitch angle. The plasma processes are non-resonant instabilities that drive non-resonant quasilinear diffusion (NQD), thereby pumping energy from waves and the parallel motion of the particle into the perpendicular motion of the particle. It is shown that NQD can maintain the pitch angles for particles near the light-cylinder such that they radiate synchrotron radiation at MeV energies. Compared to conventional emission mechanisms (such as polar cap or outer gap models), the resulting spectrum has a relatively low upper cut-off from about a few to 100 MeV. Possible observational consequences of this mechanism are discussed.  相似文献   

13.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

14.
We test a new emission mechanism in pulsar magnetospheres, eventually responsible in part for the high level of observed radio radiation. This is carried out by comparing the efficiency of the two-stream instability of Langmuir waves in a pulsar emission region, where the stationary and non-stationary characters of pair plasma outflows produced in the gap region are characterized by two different time-scales. On the shorter time-scale, the Ruderman &38; Sutherland 'sparking' phenomenon leads to the creation of pair plasma clouds, in motion along magnetic field lines, that contain particles with a large spectrum of momenta. The overlapping of particles with different energies produced in successive clouds results in an efficient 'two stream'-like instability. This effect is a consequence of the non-stationary character of the pair plasma produced in the gap region, just above the magnetic poles of the neutron star. On a long time-scale, resulting pair plasma outflows in pulsar magnetospheres can be treated as stationary. In this case, the instability which results from interaction between existing primary beam particles and the pair plasma is negligible, whereas the instability owing to interaction between electrons and positrons of the pair plasma itself, and more precisely to their relative drift motion along curved magnetic field lines, is effective. We derive characteristic features of the triggered instability, using specific distribution functions to describe either particles in the assembly of clouds or relative drifting of electrons and positrons in these same plasma clouds. Although linear and local, our treatment suggests that non-stationary effects may compete with, or even dominate over, drifting effects in parts of pulsar emission regions.  相似文献   

15.
Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald–Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.  相似文献   

16.
The shape of pulsar radio beams   总被引:1,自引:0,他引:1  
Using all available multicomponent radio pulse profiles for pulsars with medium to long periods and good polarization data, we have constructed a two-dimensional image of the mean radio beam shape. This shows a peak near the centre of the beam but is otherwise relatively uniform with only mild enhancements in a few regions. This result supports the patchy beam model for emission beams, in which the mean beam shape represents the properties of the emission mechanism and observed pulse components result from emission sources distributed randomly across the beam.  相似文献   

17.
We report on a sensitive survey for radio pulsar wind nebulae (PWN) towards 27 energetic and/or high-velocity pulsars. Observations were carried out at 1.4 GHz using the Very Large Array and the Australia Telescope Compact Array and utilized pulsar-gating to search for off-pulse emission. These observing parameters resulted in a considerably more sensitive search than previous surveys and could detect PWN over a much wider range of spatial scales (and hence ambient densities and pulsar velocities). However, no emission clearly corresponding to a PWN was discovered. Based on these non-detections we argue that the young and energetic pulsars in our sample have winds which are typical of young pulsars, but produce unobservable PWN because they reside in low-density ( n ∼0.003 cm−3) regions of the interstellar medium. However, non-detection of PWN around older and less energetic pulsars can only be explained if the radio luminosity of their winds is less than 10−5 of their spin-down luminosity, implying an efficiency at least an order of magnitude smaller than that seen for young pulsars.  相似文献   

18.
We present an empirical model for single pulses of radio emission from pulsars based on Gaussian probability distributions for relevant variables. The radiation at a specific pulse phase is represented as the superposition of radiation in two (approximately) orthogonally polarized modes (OPMs) from one or more subsources in the emission region of the pulsar. For each subsource, the polarization states are drawn randomly from statistical distributions, with the mean and the variance on the Poincaré sphere as free parameters. The intensity of one OPM is chosen from a lognormal distribution, and the intensity of the other OPM is assumed to be partially correlated, with the degree of correlation also chosen from a Gaussian distribution. The model is used to construct simulated data described in the same format as real data: distributions of the polarization of pulses on the Poincaré sphere and histograms of the intensity and other parameters. We concentrate on the interpretation of data for specific phases of PSR B0329+54 for which the OPMs are not orthogonal, with one well defined and the other spread out around an annulus on the Poincaré sphere at some phases. The results support the assumption that the radiation emerges in two OPMs with closely correlated intensities, and that in a statistical fraction of pulses one OPM is invisible.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号