首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Since the Viking missions in 1976, magnesium sulfates have been predicted to exist on the surface of Mars. Recent orbital measurements suggest that Mg-sulfates are rather ubiquitous on the martian surface. Chemical analyses by landers support the inference that Mg-sulfate hydrates may be one source of the significant quantities of equatorial near-surface hydrogen observed by the neutron and γ-ray spectrometers on the Mars Odyssey spacecraft. The present study was undertaken to examine stability relations among the various Mg-sulfate hydrates. Using saturated salt solutions to control water-vapor pressure at temperatures of 3, 23, 50, 63, and 75 °C, Mg-sulfate phases were allowed to equilibrate from 2 to 3 months to see which hydration states were formed or were stable. Starting materials consisted of hexahydrite (6H2O), starkeyite (4H2O), kieserite (1H2O), a second monohydrate-polymorph available as a chemical reagent, and an anhydrous MgSO4 reagent. Products created in this study included these minerals, along with epsomite (7H2O), sanderite (2H2O), amorphous MgSO4 (1-2H2O), several previously undescribed phases, one of which was quite persistent (2.4H2O), and trace amounts of pentahydrite (5H2O). As expected, Mg-sulfate stability is strongly dependent on water vapor pressure and temperature. Lower temperatures favor the more hydrated Mg-sulfates. However, the MgSO4 system was found to be surprisingly complicated and is strongly dominated by metastability, sluggish kinetics, and reaction pathways. Unexpected results were frequently encountered, in addition to the formation of previously undescribed phases. Several of the hydrates also show significant metastable extensions, such that phase boundaries can only be approximated. For example, kieserite, which has been reported on Mars from OMEGA data, in addition to having a distinct stability region, is resistant to transformation and persists throughout temperature-RH space until very high relative humidities are achieved. Results of this study show that MgSO4 hydrates in addition to epsomite, hexahydrite, and kieserite can persist and should not be overlooked when assessing possible Mg-sulfate minerals that can occur on Mars.  相似文献   

2.
We report new measurements of equilibrium relative humidities for stable and metastable hydration-dehydration equilibria involving several magnesium sulfates in the MgSO4·nH2O series. We also report a comprehensive thermodynamic treatment of the system including solution properties and experimental data from the published literature, i.e. solubilities, heat capacities and additional decomposition humidities. While for some magnesium sulfate hydrates solubility data in the binary system MgSO4-H2O are sparse, there is a reasonable database of solubility measurements of these hydrates in the ternary MgCl2-MgSO4-H2O and the quaternary reciprocal Na+-Mg2+-Cl-SO42-H2O systems. To make these data suitable for the determination of solubility products, we parameterized a Pitzer ion interaction model for the calculation of activity coefficients and water activities in mixed solutions of these systems and report the ion interaction parameters for the Na+-Mg2+-Cl-SO42-H2O system. The model predicted solubilities in the reciprocal system are in very good agreement with experimental data. Using all available experimental data and the solution model an updated phase diagram of the MgSO4-H2O system covering the whole temperature range from about 170 to 473 K is established. This treatment includes MgSO4·H2O (kieserite), MgSO4·4H2O (starkeyite), MgSO4·5H2O (pentahydrite), MgSO4·6H2O (hexahydrite), MgSO4·7H2O (epsomite) and MgSO4·11H2O (meridianiite). It is shown that only kieserite, hexahydrite, epsomite and meridianiite show fields of stable existence while starkeyite and pentahydrite are always metastable. Due to sluggish kinetics of kieserite formation, however, there is a rather extended field of metastable existence of starkeyite which makes this solid a major product in dehydration reactions. The model predicted behavior of the magnesium sulfates is in excellent agreement with observations reported in the literature under terrestrial temperature and relative humidity conditions. We also discuss the implications of the new phase diagram for sulfates on Mars.  相似文献   

3.
The mechanism of thermochemical sulfate reduction (TSR) was investigated by separately heating n-C24 with three different sulfates (CaSO4, Na2SO4, MgSO4) in sealed gold tubes at 420 °C and measuring the stable carbon isotope values of hydrocarbon (C1-C5) and non-hydrocarbon (CO2) products. Extensive TSR was observed with the MgSO4 reactant as reflected by increasing concentrations of H2S, 13C depleted CO2 and relatively low concentrations of H2 (compared to the control). H2S yields were already very high at the first monitoring time (12 h) when the temperature had just reached 420 °C, suggesting that TSR had commenced well prior to this temperature. Only trace amounts of n-C24 and secondary C3-C5 alkanes were detected at 12 h, reflecting the efficient TSR utilization of the reactant and lower molecular weight alkane products. Ethane levels were still relatively high at 12 h, but declined thereafter as it was subject to TSR in the absence of higher molecular weight alkanes which had already been utilized. Methane yields were consistently high throughout the 48 h MgSO4 treatment. The temporal decrease in the concentrations of alkanes available for TSR may also contribute to the sharp enhancement of CO2 after 36 h. Absence or dampening of the molecular and isotopic trends of MgSO4 TSR was observed with Na2SO4 and CaSO4 respectively, directly reflecting the levels of TSR reached using these sulfate treatments.For all treatments, the δ13C values of C1-5n-alkanes showed an increase with both molecular weight and treatment time. MgSO4 TSR led to a 5-10‰ increase in the δ13C values of the C1-C5 hydrocarbons and a 20‰ decrease in the δ13C value of CO2. The significant 13C depletion of the CO2 may be due to co-production of 13C enriched MgCO3, although this remains unproven as the δ13C of MgCO3 was not measured. The difference in the δ13C values of ethane and propane (Δδ13CEP) increased in magnitude with the degree of TSR, and this trend could be used to help evaluate the occurrence and extent of TSR in subsurface gas reservoirs.  相似文献   

4.
In situ Atomic Force Microscopy, AFM, experiments have been carried out using calcite cleavage surfaces in contact with solutions of MgSO4, MgCl2, Na2SO4 and NaCl in order to attempt to understand the role of Mg2+ during calcite dissolution. Although previous work has indicated that magnesium inhibits calcite dissolution, quantitative AFM analyses show that despite the fact that Mg2+ inhibits etch pit spreading, it increases the density and depth of etch pits nucleated on calcite surfaces and, subsequently, the overall dissolution rates: i.e., from 10−11.75 mol cm−2 s−1 (in deionized water) up to 10−10.54 mol cm−2 s−1 (in 2.8 M MgSO4). Such an effect is concentration-dependent and it is most evident in concentrated solutions ([Mg2+] >> 50 mM). These results show that common soluble salts (especially Mg sulfates) may play a critical role in the chemical weathering of carbonate rocks in nature as well as in the decay of carbonate stone in buildings and statuary.  相似文献   

5.
海洋沉积物热释光——潜在的天然气水合物找矿方法   总被引:2,自引:0,他引:2  
概述了热释光的形成机理。从放射性方法探测油气藏的原理出发,提出了海洋沉积物热释光探测天然气水合物的可能性。对采自中国南海、东海的海底沉积物进行了有机烃、金属元素和热释光分析。结果表明,热释光与有机烃类呈正相关,天然气水合物形成和分解产生的碳酸钙、硫酸钙及硫酸钡沉淀是很好的热释光晶体,在矿物结晶过程中加入的微量金属元素对热释光起到调节作用。热释光不受有机污染的影响,灵敏度高,是很有前景的寻找天然气水合物的方法。  相似文献   

6.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

7.
The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars.The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-H2O system.The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as lepidocrocite, schwertmannite, ferricopiapite, copiapite, and bilinite may also be present on the surface of Mars. Evaporation or freezing of the Martian brine led to similar mineral precipitates. However, in freezing, compared to evaporation, the following key differences were found: (1) magnesium sulfates had higher hydration states; (2) there was greater total aqueous sulfate (SO4T = SO4 + HSO4) removal; and (3) there was a significantly higher aqueous Cl/SO4T ratio in the residual Na-Mg-Cl brine. Given the similarities of model results to observations, alternating dry/wet and freeze/thaw cycles and brine migration could have played major roles in vug formation, Cl stratification, and hematite concretion formation on Mars.  相似文献   

8.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

9.
Experimental studies on the stability of several Mg-sulfate hydrates including epsomite (MgSO4·7H2O), hexahydrite (MgSO4·6H2O), starkeyite (MgSO4·4H2O), and kieserite (MgSO4·H2O) as a function of temperature and relative humidity are in poor agreement with calculations based on thermodynamic properties of these substances taken from the literature. Therefore, we synthesized four different MgSO4 hydrates and measured their enthalpies of formation by solution calorimetry at T = 298.15 K. The resulting enthalpies of formation from the elements are:
ΔfH0298 (epsomite) = −3387.7 ± 1.3 kJmol−1
ΔfH0298 (hexahydrite) = −3088.1 ± 1.1 kJmol−1
ΔfH0298 (sanderite, MgSO4·2H2O) = −1894.9 ± 1.3 kJmol−1
ΔfH0298 (kieserite) = −1612.4 ± 1.3 kJmol−1
Using mathematical programming (MAP) techniques, standard thermodynamic values consistent both with our calorimetric data and previously published humidity brackets could be derived:
Epsomite: ΔfH0298 = −3388.7 kJmol−1, S0298 = 371.3 Jmol−1 K−1, ΔfG0298 = −2871.0 kJmol−1
Hexahydrite: ΔfH0298 = −3087.3 kJmol−1, S0298 = 348.5 Jmol−1 K−1, ΔfG0298 = −2632.3 kJmol−1
Starkeyite: ΔfH0298 = −2496.1 kJmol−1, S0298 = 259.9 Jmol−1 K−1, ΔfG0298 = −2153.8 kJmol−1
Kieserite: ΔfH0298 = −1611.5 kJmol−1, S0298 = 126.0 Jmol−1 K−1, ΔfG0298 = −1437.9 kJmol−1
Additionally, heat capacity measurements and standard entropy determinations of several magnesium sulfate hydrate minerals from the literature are analyzed and judged against estimates obtained from a linear combination of the heat capacities of MgSO4 and hexagonal ice. The results of the MAP analysis are compared to these estimates to conclude that heat capacity and entropy correlate well with the number of waters of hydration. However, even the good correlation is not good enough to capture the fine variations in these properties. Consequently, their experimental measurement is inevitable if reliable thermodynamic data are sought. Our MAP thermodynamic data show that epsomite, hexahydrite, and kieserite have stability fields in the T-%RH space. Starkeyite is metastable. Although no MAP data could have been derived for pentahydrite (MgSO4·5H2O) and sanderite, their transient existence suggest that both of them are metastable as well.  相似文献   

10.
The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ν1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4·2H2O) that may have specific relevance for the martian surface.  相似文献   

11.
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines.FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases.There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water chemistry over short distances, reflecting the interaction of acid ground waters with neutral to alkaline lake waters derived from ponded surface runoff. Meridiani Planum observations indicate that such lateral variations are much less pronounced, pointing to the dominant influence of ground water chemistry, vertical ground water movements, and aeolian processes on the Martian surface mineralogy.  相似文献   

12.
Based on our previous development of the molecular interaction potential for pure H2O and CO2 [Zhang, Z.G., Duan, Z.H. 2005a. Isothermal-isobaric molecular dynamics simulations of the PVT properties of water over wide range of temperatures and pressures. Phys. Earth Planet Interiors149, 335-354; Zhang, Z.G., Duan, Z.H. 2005b. An optimized molecular potential for carbon dioxide. J. Chem. Phys.122, 214507] and the ab initio potential surface across CO2-H2O molecules constructed in this study, we carried out more than one thousand molecular dynamics simulations of the PVTx properties of the CO2-H2O mixtures in the temperature-pressure range from 673.15 to 2573.15 K up to 10.0 GPa. Comparison with extensive experimental PVTx data indicates that the simulated results generally agree with experimental data within 2% in density, equivalent to experimental uncertainty. Even the data under the highest experimental temperature-pressure conditions (up to 1673 K and 1.94 GPa) are well predicted with the agreement within 1.0% in density, indicating that the high accuracy of the simulation is well retained as the temperature and pressure increase. The consistent and stable predictability of the simulation from low to high temperature-pressure and the fact that the molecular dynamics simulation resort to no experimental data but to ab initio molecular potential makes us convinced that the simulation results should be reliable up to at least 2573 K and 10 GPa with errors less than 2% in density. In order to integrate all the simulation results of this study and previous studies [Zhang and Duan, 2005a, 2005b] and the experimental data for the calculation of volumetric properties (volume, density, and excess volume), heat properties, and chemical properties (fugacity, activity, and possibly supercritical phase separation), an equation of state (EOS) is laboriously developed for the CO2, H2O, and CO2-H2O systems. This EOS reproduces all the experimental and simulated data covering a wide temperature and pressure range from 673.15 to 2573.15 K and from 0 to 10.0 GPa within experimental or simulation uncertainty.  相似文献   

13.
We have performed an experimental study of the aqueous alteration of the Allende CV3 carbonaceous chondrite under highly oxidizing conditions, in order to examine the alteration behavior of Allende’s anhydrous mineralogy. The experiments were carried out at temperatures of 100, 150, and 200 °C, for time periods between 7 and 180 days, with water/rock ratios ranging from 1:1 to 9:1. Uncrushed cubes of Allende were used so that the spatial relationships between reactant and product phases could be examined in detail. Scanning electron microscope studies show that in all the experiments, even those of short duration (7 days), soluble salts of Ca and Mg (CaSO4, CaCO3, and MgSO4) precipitated on the sample surface, indicating that these elements are rapidly mobilized during alteration. In addition, iron oxides and hydroxides formed on the sample surfaces. The sulfates, carbonates, and the majority of the iron-bearing secondary minerals are randomly distributed over the surface of samples. In some instances the iron oxides and hydroxides are constrained to the boundaries of altering mineral grains. Transmission electron microscope studies show that the FeO-rich olivine in the interior of the samples has altered to form interlayered serpentine/saponite and Fe-oxyhydroxides. The degree of alteration increases significantly with increasing water/rock ratio, and to a lesser extent with increasing duration of heating. The serpentine/saponite forms both by direct replacement of the olivine in crystallographically oriented intergrowths, and by recrystallization of an amorphous Si-rich phase that precipitates in pore space between the olivine grains. The alteration assemblage bears many similarities to those found in altered carbonaceous chondrites, although in detail there are important differences, which we attribute to (a) the relatively high temperatures of our experiments and (b) comparatively short reaction times compared with the natural examples. In terms of mineral assemblage, our experiments most closely resemble alteration in the CI chondrites, although the degree of alteration of our experiments is much lower. CI chondrites contain serpentine/saponite intergrowths and veins of Ca-sulfate and Ca-carbonate as well as the Fe-oxyhydroxide, ferrihydrite. However, the phyllosilicate phases formed in our experiments are somewhat coarser-grained than the finest phyllosilicate fraction present in CI chondrites, suggesting that alteration of the CI chondrites occurred at lower temperatures. In terms of mineral assemblage, our experiments also appear to come close to matching CR chondrites, although we infer that CR alteration probably occurred at temperatures <100 °C, based on the very fine-grained size of phyllosilicates in CR matrices.  相似文献   

14.
Phase relations on the diopside (Di)-hedenbergite (Hd)-jadeite (Jd) system modeling mineral associations of natural eclogites were studied for the compositions (mol %) Di70Jd30, Di50Jd50, Di30Jd70, Di20Hd80, and Di40Hd10Jd50 using a toroidal anvil-with-hole (7 GPa) and a Kawai-type 6-8 multianvil apparatus (12-24 GPa). We established that Di, Hd, and Jd form complete series of solid solutions at 7 GPa, and melting temperatures of pure Di (1980 °C) and Jd (1870 °C) for that pressure were estimated experimentally. The melting temperature for the Di50Jd50 composition at 15.5 GPa is 2270 °C. The appearance of garnet is clearly dependent on initial clinopyroxene composition: at 1600 °C the first garnet crystals are observed at 13.5 GPa in the jadeite-rich part of the system (Di30Jd70), whereas diopside-rich starting material (Di70Jd30) produces garnet only above 17 GPa. The proportion of garnet increases rapidly above 18 GPa as pyroxene dissolves in the garnet structure and pyroxene-free garnetites are produced from diopside-rich starting materials. In all experiments, garnet coexists with stishovite (St). At a pressure above 18 GPa, pyroxene is completely replaced by an assemblage of majorite (Maj) + St + CaSiO3-perovskite (Ca-Pv) in Ca-rich systems, whereas Maj is associated with almost pure Jd up to a pressure of 21.5 GPa. Above ∼22 GPa, Maj, and St are associated with NaAlSiO4 with calcium ferrite structure (Cf). We established that an Hd component also spreads the range of pyroxene stability up to 20 GPa. In the Di70Jd30 system at 24 GPa an assemblage of Maj + Ca-Pv + MgSiO3 with ilmenite structure (Mg-Il) was obtained. The experimentally established correlation between Na, Si, and Al contents in Maj and pressure in Grt(Maj)-pyroxene assemblages, may be the basis for a “majorite” geobarometer. The results of our experiments are applicable to the upper mantle and the transition zone of the Earth (400-670 km), and demonstrate a wide range of transformations from eclogite to perovskite-bearing garnetite. In addition, the mineral associations obtained from the experiments allowed us to simulate parageneses of inclusions in diamonds formed under the conditions of the transition zone and the lower mantle.  相似文献   

15.
We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and crystalline forsterite. On compression by a factor of two, we find that the Grüneisen parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid and forsterite equations of state reveals a temperature-dependent density crossover at pressures of ∼12-17 GPa. Along the melting curve, which we calculate by integration of the Clapeyron equation, the density crossover occurs within the forsterite stability field at P = 13 GPa and T = 2550 K. The melting curve obtained from the root mean-square atomic displacement in forsterite using the Lindemann law fails to match experimental or calculated melting curves. We attribute this failure to the liquid structure that differs significantly from that of forsterite, and which changes markedly upon compression, with increases in the degree of polymerization and coordination. The mean Si coordination increases from 4 in the uncompressed system to 6 upon twofold compression. The self-diffusion coefficients increase with temperature and decrease monotonically with pressure, and are well described by the Arrhenian relation. We compare our equation of state to the available highpressure shock wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is consistent with partial melting along the forsterite Hugoniot at pressures 150-170 GPa, and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at the highest experimental pressure to date (200 GPa).  相似文献   

16.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

17.
A means for estimating pressures in natural samples based on both the coupled substitution (Na+)[1+] (Ti + [VI]Si)[4+] = (M)[2+] (Al + Cr)[3+], and the classic pyroxene-stoichiometry majorite-substitution into garnet at high-pressure, is derived for garnets with majoritic chemistry. The technique is based on a compilation of experimental data for different bulk compositions. It is compositionally and thermally robust and can be used to estimate pressures experienced by natural materials during formation of majoritic garnet. In addition, it can be used either retrospectively, or in new experimental studies to establish the pressures of crystallization of reaction products, and determine if disequilibrium is recorded by the chemistries of majoritic garnets. Pressures are calculated based on majoritic chemistries in chondritic meteorites and diamond inclusions. Majoritic garnets associated with Mg perovskite in shocked L chondrites (n = 4) yield uniform pressures of 23.8 ± 0.2 GPa that are slightly higher than pressures recorded by majoritic garnet in shock-derived melt veins in L chondrites (22.4 ± 0.6 GPa; n = 5). Similar pressures are also exhibited by shock-derived majoritic garnets in H chondrites (22.2 ± 1.1 GPa; n = 3). Diamond inclusions with eclogitic and peridotitic majoritic garnet chemistries exhibit mean pressures of 10.7 ± 2.7 GPa (n = 30) and 8.3 ± 1.6 GPa (n = 15) respectively, consistent with a sub-lithospheric origin. However, pressures defined by majoritic diamond inclusions from Jagersfontein (22.3 ± 0.8 GPa and 16.9 ± 1 GPa), Monastery (15.7 ± 7 GPa) and Kankan (15.5 ± 0.2 GPa) show that these inclusions originated from the mantle transition zone. Thus, this new single-phase method for pressure estimation has unmatched potential to map the depth of formation of garnets with majoritic chemistries that occur as diamond inclusions in all parageneses except those that include Ca silicate perovskite. The derived pressures confirm the sub-lithospheric origin of eclogitic majoritic diamond inclusions, and thus provide a more comprehensive picture of the important role of storage of oceanic lithosphere in the transition zone.  相似文献   

18.
Polymerizations of organic monomers including amino acids, nucleotides and monosaccharides are essential processes for chemical evolution of life. Since these reactions proceed with “dehydration” reactions, they are possibly promoted if combined with thermodynamically favorable “hydration” reactions of minerals and salts. To test the possibility, we conducted heating experiments of the simplest amino acid “glycine (Gly)” mixed with four simple anhydrous salts (MgSO4, SrCl2, BaCl2 and Li2SO4) at 140 °C up to 20 days. Gly polymerization was strongly promoted by mixing with the salts in the order of MgSO4 > SrCl2 > BaCl2 > Li2SO4. Up to 6-mer of Gly polymers were synthesized in the Gly-MgSO4 mixture, and a total yield of Gly polymers attained about 7% of the initial amount of Gly by the 20 days heating. The total yield was about 200 times larger than that from the heating of Gly alone. XRD measurements of the Gly-MgSO4 mixture revealed the generation of MgSO4 monohydrate during Gly polymerization. These observations indicate that Gly polymerization was promoted by the salt hydrations through the hydration-dehydration interactions. Based on the observations, we tried to find a relationship between thermodynamic characteristics of the interactions and the promotion effects of each salt on Gly polymerization. It was found that the salts having lower hydration ΔrG0 (easier to hydrate) promote Gly polymerization more strongly. The relationship was used to estimate promotion effects of simple oxide minerals on Gly polymerization. The estimations were consistent with previous observations about the effects of these minerals on Gly polymerization. The fact suggests that the hydration-dehydration interactions between amino acids and minerals are an important mechanism for amino acids’ polymerizations on minerals.  相似文献   

19.
Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H2O and hydroxyl group, H2Om + O ? 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant (K) is independent of total H2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.  相似文献   

20.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号