首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》1999,14(4):511-530
The oxidation of Fe(II) is apparently the rate-limiting step in passive treatment of coal mine drainage. Little work has been done to determine the kinetics of oxidation in such field systems, and no models of passive treatment systems explicitly consider iron oxidation kinetics. A Stella II model using Fe(II)init concentration, pH, temperature, Thiobacillus ferrooxidans and O2 concentration, flow rate, and pond volume is used to predict Fe(II) oxidation rates and concentrations in seventeen ponds under a wide range of conditions (pH 2.8 to 6.8 with Fe(II) concentrations of less than 240 mg L−1) from 6 passive treatment facilities. The oxidation rate is modeled based on the combination of published abiotic and biological laboratory rate laws. Although many other variables have been observed to influence Fe(II) oxidation rates, the 7 variables above allow field systems to be modeled reasonably accurately for conditions in this study.Measured T. ferrooxidans concentrations were approximately 107 times lower than concentrations required in the model to accurately predict field Fe(II) concentrations. This result suggests that either 1) the most probable number enumeration method underestimated the bacterial concentrations, or 2) the biological rate law employed underestimated the influence of bacteria, or both. Due to this discrepancy, bacterial concentrations used in the model for pH values of less than 5 are treated as fit parameters rather than empirically measured values.Predicted Fe(II) concentrations in ponds agree well with measured Fe(II) concentrations, and predicted oxidation rates also agree well with field-measured rates. From pH 2.8 to approximately pH 5, Fe(II) oxidation rates are negatively correlated with pH and catalyzed by T. ferrooxidans. From pH 5 to 6.4, Fe(II) oxidation appears to be primarily abiotic and is positively correlated with pH. Above pH 6.4, oxidation appears to be independent of pH. Above pH 5, treatment efficiency is affected most by changing design parameters in the following order: pH>temperature≈influent Fe(II)>pond volume≈O2. Little to no increase in Fe(II) oxidation rate occurs due to pH increases above pH 6.4. Failure to consider Fe(II) oxidation rates in treatment system design may result in insufficient Fe removal.  相似文献   

2.
The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.  相似文献   

3.
The oxidation of Fe(II) by H2O2 has been studied in the presence of Suwannee River fulvic acid, a standard form of natural organic matter, by adding inorganic Fe(II) to solutions containing both H2O2 and fulvic acid and monitoring the total Fe(II) concentration using a luminol chemiluminescence method. At pH 8.4 and in the absence of competing metals, Suwannee River fulvic acid significantly retards the rate of Fe(II) oxidation due to gradual formation of a species that is oxidized more slowly than inorganic Fe(II) by both O2 and H2O2. It is suggested that rapid formation of a weak Fe(II)-fulvic acid complex that is not readily oxidized by H2O2 is the cause of the reduction in the initial oxidation rate, and that the subsequent further reduction in oxidation rate is a result of the formation of a second type of Fe(II)-fulvic acid complex that is resistant to both O2 and H2O2 oxidation. A kinetic model has been developed that supports this conceptual model. The results demonstrate that, under certain conditions, natural organic matter may stabilize Fe(II) in the presence of elevated H2O2 concentrations, significantly increasing the lifetime of ferrous iron and reducing the flux of hydroxyl radicals produced through this oxidation pathway.  相似文献   

4.
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42− and Cl salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor αFe(III)aq-Fe(II)aq ∼ 1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (∼1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (∼1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9‰ (αFe(III)aq-Fe(II)aq ∼ 1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record.  相似文献   

5.
Sorption and catalytic oxidation of Fe(II) at the surface of calcite   总被引:1,自引:0,他引:1  
The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 h equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA57 (1993), 3505; Pokrovsky et al., Langmuir16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO3Fe+ and >CO3FeCO3H0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system (t1/2 = 145 ± 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite (t1/2 = 41 ± 1 min and t1/2 = 100 ± 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO3FeCO3H0, for which the species specific rate constant was estimated.  相似文献   

6.
This paper presents the results of extensive field trials measuring rates of Fe(II) oxidation at a number of Fe-bearing mine drainage discharges in the UK. Batch experiments were carried out with samples taken at regular intervals and Fe(II) concentration determined spectrophotometrically using 2′2-bipyridyl as the complexing agent. Initial concentrations for Fe(II) were 5.65-76.5 mg/L. Temperature, pH and dissolved O2 (DO) were logged every 10 s, with pH at the start of the experiments in the range 5.64-6.95 and alkalinity ranging from 73 to 741 mg/L CaCO3 equivalent. A numerical model based on a fourth order Runge-Kutta method was developed to calculate values for k1, the rate constant for homogeneous oxidation, from the experimental data. The measured values of pH, temperature, [Fe(II)] and DO were input into the model with resulting values for k1 found to be in the range 2.7 × 1014-2.7 × 1016 M−2 atm−1 min−1. These values for k1 are 1-3 orders of magnitude higher than previously reported for laboratory studies at a similar pH. Comparison of the observed Fe(II) oxidation rates to data published by other authors show a good correlation with heterogenous oxidation rates and may indicate the importance of autocatalysis in these systems. These higher than expected rates of Fe oxidation could have a significant impact on the design of treatment schemes for the remediation of mine drainage and other Fe-bearing ground waters in the future.  相似文献   

7.
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O2, and FeS(aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, PO2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS(aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.  相似文献   

8.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

9.
Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe-O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II)aq - oxide interaction will produce low δ56Fe values for Fe(II)aq, similar to that produced by Fe(II) oxidation, only small quantities of low-δ56Fe Fe(II)aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low-δ56Fe aqueous Fe(II) in many natural systems.  相似文献   

10.
The potential for reduction of 99TcO4(aq) to poorly soluble 99TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4(aq) at rates that generally increased with increasing concentrations of 0.5 N HCl-extractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h−1), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and 57Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sediment-associated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4(aq) associated with groundwater contaminant plumes.  相似文献   

11.
Natural attenuation of arsenic by simple adsorption on oxyhydroxides may be limited due to competing oxyanions, but uptake by coprecipitation may locally sequester arsenic. We have systematically investigated the mechanism and mode (adsorption versus coprecipitation) of arsenic uptake in the presence of carbonate and phosphate, from solutions of inorganic composition similar to many groundwaters. Efficient arsenic removal, >95% As(V) and ∼55% in initial As(III) systems, occurred over 24 h at pHs 5.5-6.5 when Fe(II) and hydroxylapatite (Ca5(PO4)3OH, HAP) “seed” crystals were added to solutions that had been previously reacted with HAP, atmospheric CO2(g) and O2(g). Arsenic adsorption was insignificant (<10%) on HAP without Fe(II). Greater uptake in the As(III) system in the presence of Fe(II) was interpreted as due to faster As(III) to As(V) oxidation by molecular oxygen in a putative pathway involving Fe(IV) and As(IV) intermediate species. HAP acts as a pH buffer that allows faster Fe(II) oxidation. Solution analyses coupled with high-resolution transmission electron microscopy (HRTEM), X-ray Energy-Dispersive Spectroscopy (EDS), and X-Ray Absorption Spectroscopy (XAS) indicated the precipitation of sub-spherical particles of an amorphous, chemically-mixed, nanophase, FeIII[(OH)3(PO4)(AsVO4)]·nH2O or FeIII[(OH)3( PO4)(AsVO4)(AsIIIO3)minornH2O, where AsIIIO3 is a minor component.The mode of As uptake was further investigated in binary coprecipitation (Fe(II) + As(III) or P), and ternary coprecipitation and adsorption experiments (Fe(II) + As(III) + P) at variable As/Fe, P/Fe and As/P/Fe ratios. Foil-like, poorly crystalline, nanoparticles of FeIII(OH)3 and sub-spherical, amorphous, chemically-mixed, metastable nanoparticles of FeIII[(OH)3, PO4nH2O coexisted at lower P/Fe ratios than predicted by bulk solubilities of strengite (FePO4·2H2O) and goethite (FeOOH). Uptake of As and P in these systems decreased as binary coprecipitation > ternary coprecipitation > ternary adsorption.Significantly, the chemically-mixed, ferric oxyhydroxide-phosphate-arsenate nanophases found here are very similar to those found in the natural environment at slightly acidic to circum-neutral pHs in sub-oxic to oxic systems, such phases may naturally attenuate As mobility in the environment, but it is important to recognize that our system and the natural environment are kinetically evolving, and the ultimate environmental fate of As will depend on the long-term stability and potential phase transformations of these mixed nanophases. Our results also underscore the importance of using sufficiently complex, yet systematically designed, model systems to accurately represent the natural environment.  相似文献   

12.
X-ray photoelectron spectroscopy (XPS) measurements of cobalt adsorbed on MnO2 reveal strong evidence that Co(II) has been oxidized to Co(III). The manganese spectra are characteristic of Mn(IV). Model calculations suggest that Co(II) cannot be oxidized by O2 to Co(III) in bulk solution at seawater concentrations but that the oxidation can proceed in the presence of the strong electric field at the MnO2-solution interface. Ni(II), however, cannot be oxidized at the interface except at very high concentrations. These calculations suggest that the oxidation of Co(II) can explain the geochemical separation of cobalt from nickel.  相似文献   

13.
The sorption of 57Fe(II) onto an Fe-free, mineralogically pure and Ca-saturated synthetic montmorillonite sample (structural formula: Ca0.15(Al1.4Mg0.6)(Si4)O10(OH,F)2), was studied as a function of pH under strictly anoxic conditions (N2 glove box atmosphere, O2 content <1 ppm), using wet chemistry and cryogenic (T = 77 K) 57Fe Mössbauer spectrometry. No Fe(III) was detected in solution at any pH. However, in pH conditions where Fe(II) is removed from solution, a significant amount of surface-bound Fe(III) was produced, which increased with pH from 0% to 3% of total Fe in a pre-sorption edge region (i.e. at pH < 7.5 where about 15% of total Fe is sorbed) to 7% of total Fe when all Fe is sorbed. At low pH, where the pre-sorption edge plateau occurs (2 < pH < 7.5), the total sorbed-Fe amount remained constant but, within this sorbed-Fe pool, the Fe(III)/Fe(II) ratio increased with pH, from 0.14 at pH 2 up to 0.74 at pH 7. The pre-sorption edge plateau is interpreted as cation exchange on interlayer surfaces together with a sorption phenomenon occurring on highly reactive (i.e. high affinity) surface sites. As pH increases and protons are removed from the clay edge surface, we propose that more and more of these highly reactive sites acquire a steric configuration that stabilizes Fe(III) relative to Fe(II), thereby inducing a Fe to clay particle electron transfer. A sorption model based on cation exchange combined with surface complexation and electron transfers reproduces both wet chemical as well as the Mössbauer spectrometric results. The mechanism is fully reversible: sorbed-Fe is reduced as pH decreases (Mössbauer solid-state analyses) and all Fe returned to solution is returned as Fe(II) (solution analyses). This would not be the case if the observed oxidations were due to contaminant oxidizing agents in solution. The present work shows that alternating pH may induce surface redox phenomena in the absence of an electron acceptor in solution other than H2O.  相似文献   

14.
The photochemical oxidation of Fe(2+) -hydroxide complexes dissolved in anoxic Precambrian oceans has been suggested as a mechanism to explain the deposition of Banded Iron Formations (BIFs). Photochemical studies have not yet addressed the low levels of manganese in many of these deposits, which probably precipitated from solutions bearing similar concentrations of Fe2+ and Mn2+. Depositional models must also explain the stratigraphic separation of iron and manganese ores in manganiferous BIFs. In this study, solutions containing 0.56 M NaCl and approximately 180 micromoles MnCl2 with or without 3 to 200 micromoles FeCl2 were irradiated with filtered and unfiltered UV light from a medium-pressure mercury-vapor lamp for up to 8 hours. The solutions were deaerated and buffered to pH approximately 7, and all experiments were conducted under O2-free (< 1 ppm) atmospheres. In experiments with NaCl + MnCl2, approximately 20% of the Mn2+ was oxidized and precipitated as birnessite in 8 hours. Manganese precipitation was only observed when light with lambda < 240 nm was used. In experiments with NaCl + MnCl2 + FeCl2, little manganese was lost from solution, while Fe2+ was rapidly oxidized to Fe3+ and precipitated as gamma-FeOOH or as amorphous ferric hydroxide. The Mn:Fe ratio of these precipitates was approximately 1:50, similar to the ratios observed in BIFs. A strong upper limit on the rate of manganese photo-oxidation during the Precambrian is estimated to be 0.1 mg cm-2 yr-1, a factor of 10(3) slower than the rate of iron photo-oxidation considered reasonable in BIF depositional basins. Thus, a photochemical model for the origin of oxide facies BIFs is consistent with field observations, although models that invoke molecular O2 as the oxidant of Fe2+ and Mn2+ are not precluded. Apparently, oxide facies BIFs could have formed under anoxic, as well as under mildly oxygenated atmospheres.  相似文献   

15.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

16.
The surface structure of α-Fe2O3(0 0 0 1) was studied using crystal truncation rod (CTR) X-ray diffraction before and after reaction with aqueous Fe(II) at pH 5. The CTR results show the unreacted α-Fe2O3(0 0 0 1) surface consists of two chemically distinct structural domains: an O-layer terminated domain and a hydroxylated Fe-layer terminated domain. After exposing the α-Fe2O3(0 0 0 1) surface to aqueous Fe(II), the surface structure of both co-existing structural domains was modified due to adsorption of Fe at crystallographic lattice sites of the substrate, resulting in six-coordinated adsorbed Fe at the surface. The average Fe-O bond lengths of the adsorbed Fe are consistent with typical Fe(III)-O bond lengths (in octahedral coordination), providing evidence for the oxidation of Fe(II) to Fe(III) upon adsorption. These results highlight the important role of substrate surface structure in controlling Fe(II) adsorption. Furthermore, the molecular scale structural characterization of adsorbed Fe provides insight into the process of Fe(II) induced structural modification of hematite surfaces, which in turn aids in assessing the effective reactivity of hematite surfaces in Fe(II) rich environments.  相似文献   

17.
The initial solid phase oxidation products formed during the oxidation of aqueous Mn(II) at 25°C were studied as a function of time. The analyses included morphology (TEM), mineralogy (x-ray diffraction), OMn ratio (iodometric method), oxidation state of manganese (XPS), and dissolved manganese. The initial solid formed under our conditions was Mn3O4 (hausmannite) which converted completely to γMnOOH (manganite) after eight months. βMnOOH (feitknechtite) appeared to be an intermediate in this transformation. The OMn ratio was initially 1.37 and increased to 1.49 over the same time span. Throughout the course of this study the XPS analyses showed that the surface of the solids (<50 Å) was dominated by Mn(III). The solution pH and dissolved manganese concentrations were consistent with disproportionation and oxidation reactions that favor the transformation of Mn3O4 to γMnOOH but not to γMnO2.  相似文献   

18.
Iron isotope fractionation between aqueous Fe(II) and biogenic magnetite and Fe carbonates produced during reduction of hydrous ferric oxide (HFO) by Shewanella putrefaciens, Shewanella algae, and Geobacter sulfurreducens in laboratory experiments is a function of Fe(III) reduction rates and pathways by which biogenic minerals are formed. High Fe(III) reduction rates produced 56Fe/54Fe ratios for Fe(II)aq that are 2-3‰ lower than the HFO substrate, reflecting a kinetic isotope fractionation that was associated with rapid sorption of Fe(II) to HFO. In long-term experiments at low Fe(III) reduction rates, the Fe(II)aq-magnetite fractionation is −1.3‰, and this is interpreted to be the equilibrium fractionation factor at 22°C in the biologic reduction systems studied here. In experiments where Fe carbonate was the major ferrous product of HFO reduction, the estimated equilibrium Fe(II)aq-Fe carbonate fractionations were ca. 0.0‰ for siderite (FeCO3) and ca. +0.9‰ for Ca-substituted siderite (Ca0.15Fe0.85CO3) at 22°C. Formation of precursor phases such as amorphous nonmagnetic, noncarbonate Fe(II) solids are important in the pathways to formation of biogenic magnetite or siderite, particularly at high Fe(III) reduction rates, and these solids may have 56Fe/54Fe ratios that are up to 1‰ lower than Fe(II)aq. Under low Fe(III) reduction rates, where equilibrium is likely to be attained, it appears that both sorbed Fe(II) and amorphous Fe(II)(s) components have isotopic compositions that are similar to those of Fe(II)aq.The relative order of δ56Fe values for these biogenic minerals and aqueous Fe(II) is: magnetite > siderite ≈ Fe(II)aq > Ca-bearing Fe carbonate, and this is similar to that observed for minerals from natural samples such as Banded Iron Formations (BIFs). Where magnetite from BIFs has δ56Fe >0‰, the calculated δ56Fe value for aqueous Fe(II) suggests a source from midocean ridge (MOR) hydrothermal fluids. In contrast, magnetite from BIFs that has δ56Fe ≤0‰ apparently requires formation from aqueous Fe(II) that had very low δ56Fe values. Based on this experimental study, formation of low-δ56Fe Fe(II)aq in nonsulfidic systems seems most likely to have been produced by dissimilatory reduction of ferric oxides by Fe(III)-reducing bacteria.  相似文献   

19.
Manganese (oxy)hydroxides (MnOX) play important roles in the oxidation and mobilization of toxic As(III) in natural environments. Abiotic oxidation of Mn(II) to MnOX in the presence of Fe minerals has been proved to be an important pathway in the formation of Mn(III, IV) (oxy)hydroxides. However, interactions between Mn(II) and As(III) in the presence of Fe minerals are still poorly understood. In this study, abiotic oxidation of Mn(II) on lepidocrocite, and its effect on the oxidation and mobilization of As(III) were investigated. The results show that MnOX species are detected on lepidocrocite and their contents increase with increasing pH values ranging from 7.5 to 8.4. After 10 days, an MnOx component, groutite (α-MnOOH) was found on lepidocrocite. During the simultaneous oxidation of Mn(II) and As(III), and the As(III) pre-adsorbed processes, the presence and oxidation of Mn(II) significantly promotes the removal of soluble As(III). In addition, MnOx formed on lepidocrocite also contributes to the oxidation of soluble and adsorbed As(III) to As(V), the latter being subsequently released into solution. In the process where Mn(II) is pre-adsorbed on lepidocrocite, less As(III) is removed, given that the active sites occupied by MnOx inhibit the adsorption of As(III). In all experiments, the removal percentages of As(III) and the release of As(V) are correlated positively with pH values and initial concentrations of Mn(II), although they are not apparent in the Mn(II) pre-adsorbed system.  相似文献   

20.
The coordination environment of Fe(II) has been examined in seven anhydrous ferrosilicate glasses at 298 K and 1 bar using 57Fe Mössbauer, Fe K-edge X-ray near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS), UV-Vis-NIR, and magnetic circular dichroism (MCD) spectroscopies. Glasses of the following compositions were synthesized from oxide melts (abbreviation and nonbridging oxygen:tetrahedral cation ratio (NBO/T) in parentheses): Li2FeSi3O8 (LI2: 1.33), Rb2FeSi3O8 (RB2: 1.33), Nal.08Fel.l7Si3.l3O8 (NAl: 1.09), Nal.46Ca0.24Fel.08Si2.97O8 (NC6: 1.38), Nal.09Ca0.51Fe0.72Si3.10O8 (NC2: 1.15), Na0.99Ca0.92Fe0.24 Si3.17O8 (NCl: 1.04), and Na0.29Mg0.53Ca0.52Fe0.56Al0.91Si2.44O8 (BAS: 1.05). Mössbauer, XANES, and EXAFS information suggests that iron is dominantly ferrous in all glasses (<10 atom% Fe(III)) with an average first-neighbor Fe(II) coordination varying from ∼ 4 to 5.2 (±0.2) oxygens. The UV-Vis-NIR spectrum of each sample exhibits intense absorption centered near 8100-9200 cm−1 and weak absorption near 5000 cm−l, which cannot be assigned unambiguously. The MCD spectrum of NC6 glass, which is the first such measurement on a silicate glass, shows three transitions at ∼8500 cm−1, ∼6700 cm−1, and ∼4500 cm−1. The behavior of these MCD bands as a function of temperature (1.6 K to 300 K) and magnetic field strength (1 T to 7 T) indicates that they most likely arise from three distinct Fe(II) sites with different ground states, two of which are 5-coordinated and one of which is 4-coordinated by oxygens.The combined results suggest that Fe(II) predominantly occupies 5- and 4-coordinated sites in each glass, with the ratios differing for the different compositions. Small amounts of 6-coordinated Fe(II) are possible as well, but primarily in the more basic glass compositions such as BAS. The substitution of Li(I) for Rb(I) in the M2FeSi3O8 base glass composition causes a weakening of the average Fe(II)-O bond, as indicated by the longer Fe(II)-O distance in the latter. The basalt composition glass was found to have the largest Fe(II) sites relative to those in the other glasses in this study. A bond valence model that helps predict the coordination number of Fe(II) in silicate glasses is proposed. The structural information extrapolated to Fe(II)-bearing melts is parameterized using bond valence theory, which helps to rationalize the melt-crystal partitioning behavior of ferrous iron in natural and synthetic melt-crystal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号