首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OCq, O-Cq-O, OCH, and OCH3 groups, but less non-polar alkyls, NCH, and mobile CH2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized carbohydrates and fused-ring aromatics detected in the present study likely represented an important part of molecularly uncharacterized components (MUC).  相似文献   

2.
The St. Lawrence River discharges a substantial volume of water (405 km3/a) containing suspended (SPM; 3.42 × 106t) and dissolved (68.0 × 106t) materials to the Gulf of St. Lawrence. The total load contains organic carbon in paniculate (POC; 3–14% of SPM), and dissolved (DOC; 3.76 ± 0.63 mg/l) form. The concentration of POC (and particulate organic nitrogen) is positively correlated with discharge (increased during the spring flood and the fall enhancement of flow), but concentration of DOC is not so simply related to discharge. In consequence, the total organic carbon (POC + DOC) load is relatively invariant, and increased annually by only 2–3% despite a progressive increase of 8% in discharge over the years of this study. Seasonal differences in the composition of the particulate organic matter (POM) are interpreted as reflecting dominant contributions from within-river production in summer and from terrestrial sources in spring and fall. In years when the annual discharge was greater than average, a higher proportion of the POM was terrigenous. The organic matter in surface sediments of the estuary to which the river discharges is predominantly of terrestrial provenance.  相似文献   

3.
Carbon isotope ratio analysis of particulate, planktonic, and sedimentary organic carbon and dissolved inorganic carbon has been used to study the sources and sinks of the organic carbon in the St. Lawrence Estuary and Gulf of St. Lawrence, Canada. Particulate organic carbon (POC) isotope ratios in the upper St. Lawrence Estuary are uniform and indistinguishable from those of POC in the St. Lawrence River and of planktonic organic carbon in both areas. The abundance of freshwater diatoms in the upper Estuary suggests that upper Estuary POC is predominantly “fresh” organic matter of riverborne origin. Upper Estuary POC is isotopically different from POC in the lower St. Lawrence Estuary and Gaspé regions, but is not different from POC from the surface waters of the open Gulf of St. Lawrence. The isotopic composition of planktonic organic carbon mirrors that of the POC, indicating that the POC in the lower Estuary and Gulf is also “fresh” organic matter. Since the lower Estuary POC forms an isotopic barrier between the upper Estuary POC and the Gulf of St. Lawrence POC, there appears to be little mixing of POC between these three reservoirs. Therefore POC in the lower Estuary and Gulf is most likely both produced and deposited (or degraded) in situ.An examination of carbon isotope ratio differences between the planktonic and dissolved inorganic carbon reservoirs shows that this difference varies significantly and somewhat unpredictably between sectors of the study area. Interpretation of environmental carbon isotope data on the basis of an assumed, constant fractionation factor may be subject to large errors. Direct measurement of both reservoirs is obviously preferable.  相似文献   

4.
The distribution and partitioning of dissolved andparticulate arsenic and phosphorus in the water columnand sediments of the Saguenay Fjord in Quebec, Canada,are compared. In addition, selective and/or sequentialextractions were carried out on the suspendedparticulate matter (SPM) and solid sediments tocontrast their geochemical behaviors in this naturalaquatic system.Results of our analyses show that both arsenic andsoluble reactive phosphate are actively scavenged fromthe water column by settling particles. Upon theiraccumulation at the sediment-water interface some Asand P may be released to porewaters following thedegradation of organic matter to which they areassociated. The porewater concentrations are, however,limited by their strong affinity for authigenic,amorphous iron oxyhydroxides which accumulate in theoxic sediments near the sediment-water interface.The geochemical behavior of arsenic and phosphorusdiverge most strikingly upon the development of anoxicconditions in the sediments. Following their burial inthe anoxic zone, amorphous iron oxyhydroxides arereduced and dissolved, releasing phosphate and arsenicto the porewaters. We observed, however, thatporewater arsenic concentrations increase at shallowerdepths than phosphate in the sediments. The reductionof arsenate, As(V), to arsenite, As(III), and itsdesorption prior to the reductive dissolution of thecarrier phase(s) may explain this observation.Driven by the strong concentration gradientestablished in the suboxic zone, phosphate diffuses uptowards the oxic layer where it is readsorbed byauthigenic iron oxyhydroxides. In the organic-rich andrapidly accumulating sediments at the head of theFjord, porewater sulfate depletion and the resultingabsence of a sulfide sink for Fe(II), may lead to theformation of vivianite in the fermentation zone, apotential sink for phosphate. Arsenite released to theporewaters in the suboxic and anoxic zones of thesediments diffuses either down, where it is adsorbedto or incorporated with authigenic iron sulfides, orup towards the oxic boundary. Arsenite appears tomigrate well into the oxic zone where it may beoxidized by authigenic manganese oxides before beingadsorbed by iron oxyhydroxides present at the samedepth. Whereas, in the absence of authigenic carbonatefluorapatite precipitation, the ability of oxicsediments to retain mineralized phosphate is afunction of their amorphous iron oxyhydroxide content,arsenic retention may depend on the availability ofmanganese oxides, the thickness of the oxic layer and,its co-precipitation with iron sulfides at depth.  相似文献   

5.
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as “oil prone” and “gas prone” carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (∼30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ∼30 carbons, and of ∼20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters.  相似文献   

6.
The major problems encountered in studying estuarine particulate organic matter (POM) are the characterization and quantitation of different kinds of materials (e.g. detrital and living matter, algal and bacterial matter…) each type contributing a specific role in the ecosystem. The study of the activity of the electron transport system (ETS) is proposed as a tool for resolving these problems. Results obtained in our laboratory with cultures of planktonic algae and bacteria provided us with numerical relationships between ETS activity and various organic components such as chlorophyll, carbon and protein. These relationships were: ETS activity/chlorophyll = 2.6, carbon/ETS activity = 17.3, protein/ETS activity = 9.6 in algae; carbon/ETS activity = 5.9, protein/ETS activity = 7.7 in bacteria (ETS activity expressed in /i2h−1 at 20°C; chlorophyll, carbon and protein in μg). Such data can be applied in field studies to characterize the living algal and bacterial matter and, by difference, the detrital organic matter. We report here a study of the Loire estuary as an example.  相似文献   

7.
N has a controlling effect on litter biodegradation in the forest floor, while stabilization of organic matter in the mineral soil may be influenced by physical parameters related to soil texture. In this study, in order to understand the processes involved in soil organic matter (SOM) formation, the chemical composition of SOM was followed and evaluated with regards to N contents and soil texture. Samples were taken on sites covered with Norway spruce and displaying contrasting values of C/N ratios in the forest floor. The chemical structure of OM was characterized using solid-state CPMAS 13C and 15N nuclear magnetic resonance (NMR) spectroscopy, along with Proton Spin Relaxation Editing (PSRE) sequences. Four groups of sampling sites were defined based on the NMR spectra of Oh and A horizons. In each group displaying similar NMR characteristics, N content and soil texture could be highly different among sites. Some Oh horizons with similar NMR spectra had very different N contents. Highly humified OM in Oh horizons were observed mainly on sites with low N contents. Some A horizons with different soil texture displayed similar OM chemical structure. High contents of O-alkyl C in some A horizons could originate from higher fresh root material input.  相似文献   

8.
The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H–15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.  相似文献   

9.
Three particle interceptor traps were moored from June to September 1996 along the SE coast of Milos Island (Aegean Sea), in an area known for its extensive seabed geothermal activity. The settling particles collected differed between sites not only in quantity but also in their geochemical composition. In the area directly influenced by warm water vents, the vertical flux of particulate material was almost one order of magnitude higher than that observed at the reference sites 6.5 km away from the vents, with a higher contribution of biogenic material in the former. The neutral lipid fractions exhibited a significant zooplankton biomarker signature (e.g. cholesterol and wax esters), followed by those of microalgal and terrigenous remains. The biogeochemical cycle of sterols included the formation of steroidal ketones, thiols and stanols, the latter two particularly associated with the venting activity. Moreover, the aliphatic and aromatic hydrocarbons in the particles from the venting area reflected a locally enhanced maturity of the organic matter. Although part of the material collected in the traps may have been exported in the vent waters, the higher fluxes observed in the vicinity of the hydrothermal plumes are mainly the result of an assemblage of zooplankton which, in turn, may contribute significantly to the sedimentation, through fast sinking faecal pellets, of the petrogenic hydrocarbons possibly generated in the vents.  相似文献   

10.
Artificial fertilizers are contributing to the replacement of eelgrass (Zostera marina) by sea lettuce (Ulva lactuca) in estuaries of Prince Edward Island (PEI), Canada. In this study, we found that the nearshore fish community differed between areas dominated by these two vegetations within an estuary in every month sampled (April–August). Adult northern pipefish (Syngnathus fuscus), threespine stickleback (Gasterosteus aculeatus), blackspotted stickleback (Gasterosteus wheatlandi), and Atlantic silverside (Menidia menidia) were most strongly associated with eelgrass, while mummichog (Fundulus heteroclitus), ninespine stickleback (Pungitius pungitius), and American eel (Anguilla rostrata) were often more numerous in sea lettuce. Sea lettuce stations tended to have more young-of-the-year mummichog, fourspine stickleback (Apeltes quadracus), and Gasterosteus sp. than eelgrass stations but fewer young-of-the-year northern pipefish and Atlantic silverside. Fish richness and abundance were significantly lower in the sea lettuce than eelgrass habitat during August when benthic hypoxia occurred. We conclude that the loss of eelgrass from PEI estuaries will result in significant declines in fish biodiversity.  相似文献   

11.
The distribution of two classes of lipid biomarker compounds (fatty acids and sterols) was used in conjunction with several bulk parameters (total suspended solids, chlorophyll a, and particulate carbon and nitrogen concentrations) to examine spatial and temporal variability in the sources of particulate organic matter (POM) important to southern Chesapeake Bay. Based on these geochemical parameters, we found that suspended and sedimentary organic matter in the southern Chesapeake Bay is derived from autochthonous sources including a mixture of fresh and detrital phytoplankton, zooplankton, and bacteria. The dominant factor contributing to temporal variability during our study was phytoplankton productivity. Enrichments in particulate organic carbon, chlorophyll a, total fatty acids, total sterols, and a number of biomarkers specific to phytoplankton sources were found in particles collected from surface (1 m) and deep (1 m above the bottom) portions of the water column at several sites during the spring bloom in March 1996 and during a localized bloom in July 1995. Comparison of sites at the mouths of two tributaries (York and Rappahannock rivers) to southern Chesapeake Bay with two sites located in the bay mainsterm indicates spatial variation in the composition of POM was not significant in this region of the bay. The energetic nature of this region of the Chesapeake Bay most likely contributes to the observed homogeneity. Comparison with biomarker studies conducted in other estuaries suggests the high levels of productivity characteristic of the Chesapeake Bay contribute to high background levels of POM.  相似文献   

12.
Nonhydrolyzable carbon (NHC) and black carbon (BC) were measured upon treatments with the HCl/HF/trifluoroacetic acid method, and with the combustion method at 375 ℃, respectively in three contaminated soils from the urban area of Guangzhou and twenty-two bulk and size-fractionated sediments from the Pearl River Delta and Estuary, China. The isolated NHC and BC fractions were also characterized using elementary analysis, radiocarbon accelerated mass spectroscopy (AMS), solid state ^13C cross-polarization and magic angle spinning unclear magnetic resonance spectroscopy (^13C-CP/MAS NMR), Fourier transformed infrared spectroscopy (FTIR), and Raman microspectrometry. The results showed that the NHC and BC accounted for 25.6%-84.7 % and 4.14%-17.3%, respectively, of the total organic carbon (OC) with averages of 51.9% and 11.2% in the soils and sediments. For the less contaminated, low OC fiver and estuary sediments (WR and C08), the OC and NHC concentrations increased with decreasing particle size.  相似文献   

13.
13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra.  相似文献   

14.
Since 2002, the abundance of larvae of rainbow smelt (Osmerus mordax) and Atlantic herring (Clupea harengus) has been monitored in July in coastal nurseries (Anse Ste.-Anne (ASA) and Banc de Rivière-du-Loup (BRL)) in the Middle St. Lawrence Estuary (MSLE), Canada. The two species are spatiotemporally segregated, with smelt larvae being more abundant at the upstream, less saline site (ASA) and having an earlier hatching date. Despite these differences, the abundances of both species from 2002 to 2013 were strongly and positively related to the early spring flow of tributaries at the time of larval smelt emergence and weakly and negatively related to sea-surface temperatures in the nurseries. Larval herring abundance was weakly associated with the upstream bottom residual transport flow of the MSLE’s estuarine circulation in June, at the time of their emergence. Larval herring lengths in BRL were positively related to the sum of degree days (SDD) from hatching to sampling, with the greatest length but lowest condition in 2012. The relationship between body lengths of ASA smelt larvae and SDD was dome-shaped, suggesting lower growth than expected in the warmest years, 2006 and 2012. The highest larval abundances were observed in 2008 and 2011, both years with late tributary freshets, high tributary flows in the early spring and moderately warm summer temperatures. In contrast, low abundances occurred in 2006 and 2012, which were years with low spring tributary flows and high summer temperatures. These results suggest that the dynamics of local tributary freshets is a key driver of larval recruitment success for two key forage species in coastal nurseries until summer and support the use of fish larvae as indicators of environmental changes in the MSLE.  相似文献   

15.
张玉龙  冉勇 《地球化学》2014,(2):114-121
从东江到珠江口采集了悬浮颗粒物,通过测定总有机质的元素(TOC、TN)、同位素(δ13C、δ15N)组成以及生物标志物(氨基酸、木质素)等地球化学性质,来揭示颗粒有机质的来源和组成。结果表明,浮游生物(13%-52%)和土壤(45%-77%)是珠江颗粒有机质的主要来源,植物(0%-11%)对颗粒物的贡献较小。颗粒有机质含有高比例的氨基酸碳(TAAC),说明浮游生物对颗粒物的重要性。氨基酸的降解指数(DI)在-0.51到0.79之间,说明这些水生来源有机质的降解程度比较小。木质素的降解参数(Ad/Al、3,5-BD/V)较大,表明珠江颗粒有机碳的陆源来源主要是土壤。在颗粒物中检测到了少量的二氨基庚二酸(Dapa),说明细菌对颗粒有机碳也有所贡献。不同环境中颗粒物的木质素组成主要与颗粒物丰度和粒径有关:(1)相对于河流,水库颗粒物中的木质素含量显著偏低,降解程度更高;(2)相对于中游,下游颗粒物丰度较高,木质素含量较高。  相似文献   

16.
本研究通过测定有色溶解有机物(CDOM)的吸收光谱、荧光可溶性有机质(FDOM)的激发-发射-矩阵三维荧光光谱(excitation-emission-matrixspectra,EEMs)和稳定碳同位素组成(δ13C),系统探讨了长江口夏季水体可溶性有机质(DOM)的组成、来源、空间分布及河口混合行为等。研究结果表明,可溶性有机碳(DOC)浓度整体呈现由陆到海逐渐降低的趋势,表征有色溶解有机物含量水平的吸收系数a(355)与盐度呈负相关关系,指示可溶性有机质中荧光组分在河口的分布主要受稀释作用调控。利用EEMs并结合平行因子分析(PARAFAC)鉴定出代表陆源有机质的类腐殖质的荧光组分C2和C3,以及代表原地生产力的类蛋白质荧光组分C1和C4。由近岸到外海,表征海洋藻类生产力的C1组分在水体荧光有机质中所占比例增高,陆源信号则呈现逐渐降低趋势,与此相对应,外海水可溶性有机质具有高的光谱斜率S275–295/S350–400比值和重碳同位素组成。基于盐度vs.可溶性有机碳浓度、盐度vs.δ13C值的河流-海洋双端元混合模...  相似文献   

17.
The vertical structure of the water column and the spatial distribution and semidiurnal variability of bacteria were investigated at six stations in the upper St. Lawrence estuary. The σ1 profiles indicate that the upper St. Lawrence is a partially mixed estuary. Stratification results from buoyancy input from the freshwater outflow of the St. Lawrence River, and its variability is controlled by tidal and, to a lesser extent, wind mixing. Calculations show that tidal mixing largely exceeds mixing caused by wind. Free and attached bacteria presented different patterns of spatial distribution and temporal variability. Free bacteria exhibited highest mean concentrations at the freshwater station (3.5–4.4 106ml?1) and lowest concentrations at the downstream stations (0.3–0.5 106ml?1); their numbers declined exponentially relative to salinity. Attached bacteria had highest mean concentrations (3.2–5.5 106ml?1) at salinities between 0.5 and 5 and were virtually absent at downseam stations (<0.05 106ml?1). The importance of semidiurnal variability was demonstrated Over the idal cycle, variability of attached bacteria was always greater than that of free bacteria. The analysis of causal models between salinity and free and attached bacteria, showed that the two types of bacteria are uncoupled and that both types have a strong relationship with salimity. Physical processes are thus important controlling factors of the distribution and variability of bacteria. Results suggest that large-scale processes, such as freshwater outflow and residual circulation, largely control free bacteria, whereas short-term and more local processes (e.g., sediment resuspension caused by wind) may also be important in the control of attached bacteria.  相似文献   

18.
Complex biogeochemical studies including the determination of isotopic composition of Corg in both suspended particulate matter and surface horizon (0–1 cm) of sediments (more than 260 determinations of δ13C-Corg) were carried out for five Arctic shelf seas: White, Barents, Kara, East Siberian, and Chukchi. The aim of this study is to elucidate causes that change the isotopic composition of particulate organic carbon at the water-sediment boundary. It is shown that the isotopic composition of Corg in sediments from seas with a high river runoff (White, Kara, and East Siberian) does not inherit the isotopic composition of Corg in particles precipitating from the water column, but is enriched in heavy 13C. Seas with a low river runoff (Barents and Chukchi) show insignificant difference between the value of δ13C-Corg in both suspended load and sediment because of a low content of the isotopically light allochthonous organic matter (OM) in particulates. Complex biogeochemical studies with radioisotope tracers (14CO2, 35S, and 14CH4) revealed the existence of specific microbial filter formed from heterotrophic and autotrophic organisms at the water-sediment boundary. This filter prevents the mass influx of products of OM decomposition into water column, as well as reduces the influx of a part of OM contained in the suspended particulate matter from water into sediment.  相似文献   

19.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

20.
In the Antarctic zone, integrated studies of particulate matter in surface waters and the snow-ice cover were carried out by means of geochemical (the concentrations of particulate matter, Corg, hydrocarbons, lipids, and chlorophyll a) and optical techniques. Correlations between the treated compounds were found. A regression equation was created that enabled us to evaluate immediately the amount of particulate matter using the parameter of light attenuation by seawater. New data were obtained for the processes of accumulation of particulate matter and organic compounds under ice formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号