首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen isotope composition of nitrate is used increasingly for identifying the origin of nitrate in terrestrial and aquatic ecosystems. This novel isotope tracer technique is based on the fact that nitrate in atmospheric deposition, in fertilizers, and nitrate generated by nitrification in soils appear to have distinct oxygen isotope ratios. While the typical ranges of δ18O values of nitrate in atmospheric deposition and fertilizers are comparatively well known, few experimental data exist for the oxygen isotope composition of nitrate generated by nitrification in soils. The objective of this study was to determine δ18O values of nitrate formed by microbial nitrification in acid forest floors.Evidence from laboratory incubation experiments and field studies suggests that during microbial nitrification in acid forest floor horizons, up to two of the three oxygen atoms in newly formed nitrate are derived from water, particularly if ammonium is abundant and nitrification rates are high. It was, however, also observed that in ammonium-limited systems with low nitrification rates, significantly less than two thirds of the oxygen in newly formed nitrate can be derived from water oxygen, presumably as a result of heterotrophic nitrification. It can be concluded from the presented data that the δ18O values of nitrate formed by microbial nitrification in acid forest floors typically range between +2 and +14‰, assuming that soil water δ18O values vary between −15 and −5‰. Hence, oxygen isotope ratios of nitrate formed by nitrification in forest floors are usually distinct from those of other nitrate sources such as atmospheric deposition and synthetic fertilizers and, therefore, constitute a valuable qualitative tracer for distinguishing among these sources of nitrate. A quantitative source apportionment appears, however, difficult because of the wide range of δ18O values, particularly for atmospheric nitrate deposition and for nitrate from microbial nitrification.  相似文献   

2.
The formation of authigenic Ca-rich rhodochrosite (ACR) in sapropelic sediments of the Gotland Basin, Baltic Sea, is governed by deepwater renewal processes whereby saline water from the North Atlantic flushes the brackish anoxic Baltic Deeps. The carbon and oxygen isotopic compositions of these Mn-carbonates suggest that ACR formation takes place just below the sediment surface and that dissolved compounds from the deepwater column, such as water and bicarbonate molecules, were incorporated in ACR during authigenesis. Porewaters near the sediment surface display δ18O values of −5.4‰ (VSMOW) and are generally depleted in 18O, compared to the oxygen isotopic composition of water in equilibrium with Mn-carbonate solid solutions (ACR δ18O values are −4.6‰). This suggests that early burial diagenetic processes significantly modify the initial isotopic composition of water during Mn-carbonate formation. The reduction of sulfate having δ18O values of +8.4‰ accounts for a permanent enrichment of porewater 18O and observed δ18O values at depth equal to −4.6‰. However, this process does not explain the observed disequilibrium in the oxygen isotopic composition between water and ACR close to the sediment surface where Mn-carbonate formation takes place. Based on isotopic mass balance calculations, we suggest that MnO2 with δ18O values of +8.9‰ released oxygen enriched in 18O into the anoxic porewaters close below the sediment surface. This process should occur after oxygenation events during deepwater renewal when MnO2 accumulates at the surface of anoxic sediments. Manganese carbonates formed in these waters display δ18O values of ∼1.0‰ heavier than values expected solely from the initial deepwater composition. This quantitatively explains the discrepancy between paleosalinities calculated from ACR δ18O based on Mn-carbonate/water isotopic equilibrium fractionation and direct observations for the same period. Our results emphasize the important role of microbial MnO2 reduction during rhodochrosite authigenesis and suggest that Mn(II) activity, rather than alkalinity, is the limiting component for sedimentary Mn-carbonate formation.  相似文献   

3.
The stable nitrogen isotopic composition of nitrate, concentrations of inorganic nitrogen and phosphorus, dissolved oxygen and nitrification rates were determined at six stations ranging from the oligotrophic North Pacific Subtropical Gyre (NPSG) to the more productive Eastern Tropical North Pacific (ETNP). Nitrification rates increased along the transect from a maximum rate of 1 nmol L−1 d−1 at station ALOHA to 23.7 nmol L−1 d−1 at station 6. In oxic surface waters, nitrate isotopically enriched in 15N (maximum δ15N-NO3 value of 12.5‰) was most likely the result of assimilatory nitrate reduction. In contrast, high δ15N-NO3 values (maximum of 12.3‰) in association with high nitrate deficits and anoxic conditions supported the interpretation of isotopic fractionation due to denitrification. A one-dimensional vertical advection and diffusion model was used to estimate the fractionation factor for denitrification at two stations in the ETNP. A comparison of modeled to observed δ15N-NO3 data indicated an isotopic enrichment factor (ε) of 30‰ at station 4 and 30 to 35‰ at station 5. Isotopically light nitrate (1.1 and 3.2‰) was observed in the upper 200 m of the water column at stations in the ETNP. Tracer studies of 15NH4 and biogeochemical indicators of nitrogen fixation supported the interpretation of nitrification as the most plausible explanation for low δ15N-NO3 values observed in water column samples. Our results are consistent with the occurrence of nitrification within the euphotic zone and for the first time provide corroborating stable nitrogen isotopic evidence for this process.  相似文献   

4.
Isotopic analysis of nitrate and sulfate minerals from the nitrate ore fields of the Atacama Desert in northern Chile has shown anomalous 17O enrichments in both minerals. Δ17O values of 14-21 ‰ in nitrate and 0.4 to 4 ‰ in sulfate are the most positive found in terrestrial minerals to date. Modeling of atmospheric processes indicates that the Δ17O signatures are the result of photochemical reactions in the troposphere and stratosphere. We conclude that the bulk of the nitrate, sulfate and other soluble salts in some parts of the Atacama Desert must be the result of atmospheric deposition of particles produced by gas to particle conversion, with minor but varying amounts from sea spray and local terrestrial sources. Flux calculations indicate that the major salt deposits could have accumulated from atmospheric deposition in a period of 200,000 to 2.0 M years during hyper-arid conditions similar to those currently found in the Atacama Desert. Correlations between Δ17O and δ18O in nitrate salts from the Atacama Desert and Mojave Desert, California, indicate varying fractions of microbial and photochemical end-member sources. The photochemical nitrate isotope signature is well preserved in the driest surficial environments that are almost lifeless, whereas the microbial nitrate isotope signature becomes dominant rapidly with increasing moisture, biologic activity, and nitrogen cycling. These isotopic signatures have important implications for paleoclimate, astrobiology, and N cycling studies.  相似文献   

5.
The isotopic composition of ancient wood may be a useful archive of some climatic or geochemical conditions of the past, but presently there are many uncertainties that constrain such interpretations. We sampled naturally growing, predominantly native trees in forested regions of North America and the Caribbean to evaluate the strength of the relationships among cellulose δ18O (δ18Ocel), relative humidity (RH), precipitation δ18O (δ18Oppt), and mean annual temperature (MAT) at the continental scale, and the general range of variability in δ18Ocel associated with site hydrologic conditions and species differences. We found up to 4‰ differences among different species growing at the same site, that conifer cellulose at a site is more enriched than angiosperm cellulose by 1.5‰ (p < 0.001), and that differences in landscape position, reflecting differing access to the water table, produced differences of <1‰ in δ18Ocel. At the continental scale, δ18Ocel was strongly influenced by modeled δ18Oppt (R2 = 0.80, p < 0.001). Average summer minimum RH (RHmin) combined with δ18Oppt explained more of the variability (R2 = 0.93, p < 0.001) in δ18Ocel across North American and Caribbean forests. MAT and δ18Ocel were also strongly correlated across North America (R = 0.91 and 0.95, p < 0.001, for angiosperms and conifers, respectively). The difference between δ18Oppt and δ18Ocel is not constant (varying from 35-44‰) and is inversely correlated with δ18Oppt. The relationships among δ18Oppt, RHmin, δ18Ocel, and MAT established for North America and the Caribbean applied reasonably well when δ18Ocel was used to estimate MAT and δ18Oppt in Asia, Europe, and South America, but there were important exceptions. The most accurate predictions of MAT and δ18Oppt from δ18Ocel require RHmin. Predictions of δ18Oppt and MAT made from δ18Ocel alone produced errors of up to 8‰ and 16 °C, respectively.  相似文献   

6.
The stable isotope composition (δ15N and δ18O) of nitrate was measured during Summer 1999 in the anaerobic hypolimnion of eutrophic Lake Lugano (Switzerland). Denitrification was demonstrated by a progressive nitrate depletion coupled to increasing δ15N and δ18O values for residual nitrate. Maximum δ15N and δ18O values amounted to 27.2 and 15.7‰, respectively.15N and 18O enrichment factors for denitrification (ε) were estimated using a closed-system model and a dynamic diffusion-reaction model. Using the Rayleigh equation (closed-system approach), we obtained ε values of −11.2 and −6.6‰ for nitrogen and oxygen, respectively. The average ε values derived using the diffusion-reaction model were determined to be −20.7 ± 3.8 for nitrogen and −11.0 ± 1.7 for oxygen. Both N and O isotope fractionation appeared to be lower when denitrification rates where high, possibly in association with high organic carbon availability. In addition, variations in the isotope effects may be attributed to the variable importance of sedimentary denitrification having only a small isotope effect on the water column. The combined measurement of N and O isotope ratios in nitrate revealed that coupled nitrification-denitrification in the open-water was of minor importance. This is the first study of nitrogen and oxygen isotope effects associated with microbial denitrification in a natural lake. Moreover, this study confirms the high potential of δ18O of nitrate as a valuable biogeochemical tracer in aquatic systems, complementing nitrate δ15N.  相似文献   

7.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

8.
Stable isotope tracing and analysis play an important role in interpretation of hydrological and ecological processes at the watershed scale and can provide information regarding the flow path, water source, nutrient loss and biogeochemical cycles of a system. In this study, environmental isotopes (δ18O-H2O, δD, δ15N-NO3 ?, δ18O-NO3 ?) and chemical compositions of surface water in Guizhou Province, China, were measured to evaluate the primary sources of nitrate and characterize the processes affecting nitrate as well as its correlation with vegetation cover in karstic areas. The δ15N and δ18O-NO3 ? levels ranged from +1.3 to +9.8 ‰ and +4.7 to +16.9 ‰, respectively, which indicated that nitrate in water from the investigated area primarily originated from nitrification of soil organic matter during the sampling period. There was also a wide range of isotopes in the water and high contents of nitrate in karstic areas with poor vegetation cover, indicating that water and nutrient loss were serious problems hindering plant growth in the study areas. For example, there was a positive relationship between isotopic composition and nitrate content in the natural forest and negative relationship in Libo County nearby, which suggested that the nitrate fate was affected by land use and human disturbance.  相似文献   

9.
Anaerobic incubations of upland and wetland temperate forest soils from the same watershed were conducted under different moisture and temperature conditions. Rates of nitrous oxide (N2O) production by denitrification of nitrate () and the stable isotopic composition of the N2O (δ15N, δ18O) were measured. In all soils, N2O production increased with elevated temperature and soil moisture. At each temperature and moisture level, the rate of N2O production in the wetland soil was greater than in the upland soil. The 15N isotope effect (ε) (product − substrate) ranged from −20‰ to −29‰. These results are consistent with other published estimates of 15N fractionation from both single species culture experiments and soil incubation studies from different ecosystems.A series of incubations were conducted with 18O-enriched water (H2O) to determine if significant oxygen exchange (O-exchange) occurred between H2O and N2O precursors during denitrification. The exchange of H2O-O with nitrite () and/or nitric oxide (NO) oxygen has been documented in single organism culture studies but has not been demonstrated in soils prior to this study. The fraction of N2O-O derived from H2O-O was confined to a strikingly narrow range that differed between soil types. H2O-O incorporation into N2O produced from upland and wetland soils was 86% to 94% and 64% to 70%, respectively. Neither the temperature, soil moisture, nor the rate of N2O production influenced the magnitude of O-exchange. With the exception of one treatment, the net 18O isotope effect (εnet) (product-substrate) ranged from +37‰ to +43‰.Most previous studies that have reported 18O isotope effects for denitrification of to N2O have failed to account for the effect of oxygen exchange with H2O. When high amounts of O-exchange occur after fractionation during reductive O-loss, the 18O-enrichment is effectively lost or diminished and δ18O-N2O values will be largely dictated by δ18O-H2O values and subsequent fractionation. The process and extent of O-exchange, combined with the magnitude of oxygen isotope fractionation at each reduction step, appear to be the dominant controls on the observed oxygen isotope effect. In these experiments, significant oxygen isotope fractionation was observed to occur after the majority of water O-exchange. Due to the importance of O-exchange, the net oxygen isotope effect for N2O production in soils can only be determined using δ18O-H2O addition experiments with δ18O-H2O close to natural abundance.The results of this study support the continued use of δ15N-N2O analysis to fingerprint N2O produced from the denitrification of . The utilization of 18O/16O ratios of N2O to study N2O production pathways in soil environments is complicated by oxygen exchange with water, which is not usually quantified in field studies. The oxygen isotope fractionation observed in this study was confined to a narrow range, and there was a clear difference in water O-exchange between soil types regardless of temperature, soil moisture, and N2O production rate. This suggests that 18O/16O ratios of N2O may be useful in characterizing the actively denitrifying microbial community.  相似文献   

10.
The stable isotope nitrogen-15 (15N) is a robust indicator of nitrogen (N) source, and the joint use of δ15N and δ18O–NO3 ? values can provide more useful information about nitrate source discrimination and N cycle process. The δ15N and δ18O–NO3 ? values, as well as major ion tracers, from Taihu Lake in east China were investigated to identify the primary nitrate sources and assess nitrate biogeochemical process in the present study. The results show that the nitrate concentration in West Taihu Lake (WTL) was generally higher than those in East Taihu Lake (ETL) and its upstream inflow rivers. The NO3 ?/Cl? value combined with mapping of δ15N–NO3 ? and NO3 ? concentration suggest that the mixing process should play a major effect in WTL, and denitrification was the dominant N transformation process in WTL. A linear relationship of close to ~1: 2 was observed between δ15N–NO3 ? and δ18O–NO3 ? values in WTL, confirming the occurrence of denitrification in WTL. The δ15N–NO3 ? data imply that sewage and manure were the principal nitrate sources in WTL and its feeder rivers, while the nitrate in ETL might derive from soil organic nitrogen and atmospheric deposition. The δ18O–NO3 ? data indicate most of nitrate from microbial nitrification of organic nitrogen matter possibly make a significant contribution to the lake.  相似文献   

11.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

12.
The Martian meteorite ALH84001 contains ∼1% by weight of carbonate formed by secondary processes on the Martian surface or in the shallow subsurface. The major form of this carbonate is chemically and isotopically zoned rosettes which have been well documented elsewhere. This study concentrates upon carbonate regions ∼200 μm across which possess previously unobserved magnesium rich inner cores, interpreted here as rosette fragments, surrounded by a later stage cement containing rare Ca-rich carbonates (up to Ca81Mg07Fe04Mn07) intimately associated with feldspar. High spatial resolution ion probe analyses of Ca-rich carbonate surrounding rosette fragments have δ18OV-SMOW values as low as −10. These values are not compatible with deposition from a global Martian atmosphere invoked to explain ALH84001 rosettes. The range of δ18O values are also incompatible with a fluid that has equilibrated with the Martian crust at high temperature or from remobilisation of carbonate of rosette isotopic composition. At Martian atmospheric temperatures, the small CO2(gas)-CO2(ice) fractionation makes meteoric CO2 an unlikely source for −10 carbonates. In contrast, closed system Rayleigh fractionation of H2O can generate δ18OH2O −30, as observed at high latitudes on Earth. We suggest that atmospheric transport and precipitation of H2O in a similar fashion to that on Earth provides a source of suitably 18O depleted water for generation of carbonate with δ18OV-SMOW = −10.  相似文献   

13.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   

14.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

15.
Applications of speleothem calcite geochemistry in climate change studies require the evaluation of the accuracy and sensitivity of speleothem proxies to correctly infer paleoclimatic information. The present study of Harrison’s Cave, Barbados, uses the analysis of the modern climatology and groundwater system to evaluate controls on the C and O isotopic composition of modern speleothems. This new approach directly compares the δ18O and δ13C values of modern speleothems with the values for their corresponding drip waters in order to assess the degree to which isotopic equilibrium is achieved during calcite precipitation. If modern speleothems can be demonstrated to precipitate in isotopic equilibrium, then ancient speleothems, suitable for paleoclimatic studies, from the same cave environment may also have been precipitated in isotopic equilibrium. If modern speleothems are precipitated out of isotopic equilibrium, then the magnitude and direction of the C and O isotopic offsets may allow specific kinetic and/or equilibrium isotopic fractionation mechanisms to be identified.Carbon isotope values for the majority of modern speleothem samples from Harrison’s Cave fall within the range of equilibrium values predicted from the combined use of (1) calcite-water fractionation factors from the literature, (2) measured temperatures, and (3) measured δ13C values of the dissolved inorganic carbon of drip waters. Calcite samples range from ∼0.8‰ higher to ∼1.1‰ lower than predicted values. The 13C depletions are likely caused by kinetically driven departures in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions, caused by rapid calcite growth. 13C enrichments can be accounted for by Rayleigh distillation of the HCO3 (aq) reservoir during degassing of 13C-depleted CO2.Modern speleothems from Harrison’s Cave are not in O isotopic equilibrium with their corresponding drip waters and are 0.2‰ to 2.3‰ enriched in 18O relative to equilibrium values. δ18O variations in modern calcite are likely controlled by kinetically driven changes in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions to nonequilibrium conditions, consistent with rapid calcite growth. In contrast to δ13C, δ18O values of modern calcite may not be affected by Rayleigh distillation during degassing because CO2 hydration and hydroxylation reactions will buffer the O isotopic composition of the HCO3 (aq) reservoir. If the effects of Rayleigh distillation manifest themselves in the O isotopic system, they will result in 18O enrichment in the HCO3 (aq) reservoir and ultimately in the precipitated CaCO3.  相似文献   

16.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

17.
The acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, plays a part in the pyrite oxidation process and has been widely studied in order to determine the kinetics of the reactions and the isotopic composition of dissolved product sulphates, but the details of the oxidation processes at the surface of pyrite are still poorly known. In this study, oxygen and sulphur isotopic compositions (δ18O and δ34S) were analyzed for dissolved sulphates and water from experimental aerobic acidic (pH < 2) pyrite oxidation by A. ferrooxidans. The oxidation products attached to the pyrite surfaces were studied for their morphology (SEM), their chemistry (Raman spectroscopy) and for their δ18O (ion microprobe). They were compared to abiotically (Fe3+, H2O2, O2) oxidized pyrite surface compounds in order to constrain the oxidation pathways and to look for the existence of potential biosignatures for this system.The pyrite dissolution evolved from non-stoichiometric (during the first days) to stoichiometric (with increasing time) resulting in dissolved sulphates having distinct δ18O (e.g. +11.0‰ and −2.0‰, respectively) and δ34S (+4.5‰ and +2.8‰, respectively) values. The “oxidation layer” at the surface of pyrite is complex and made of iron oxides, sulphate, polysulphide, elemental sulphur and polythionates. Bio- and Fe3+-oxidation favour the development of monophased micrometric bumps made of hematite or sulphate while other abiotic oxidation processes result in more variable oxidation products. The δ18O of these oxidation products at the surface of oxidized pyrites are strongly variable (from ≈−40‰ to ≈+30‰) for all experiments.Isotopic fractionation between sulphates and pyrite, Δ34SSO4-pyrite, is equal to −1.3‰ and +0.4‰ for sulphates formed by stoichiometric and non-stoichiometric processes, respectively. These two values likely reflect either a S-S or a Fe-S bond breaking process. The Δ18OSO4-H2O and Δ18OSO4-O2 are estimated to be ≈+16‰ and ≈−25‰, respectively. These values are higher than previously published data and may reflect biological effects. The large δ18O heterogeneity measured at the surfaces of oxidized pyrites, whatever the oxidant, may be related (i) to the existence of local surface environments isolated from the solution in which the oxidation processes are different and (ii) to the stabilization at the pyrite surface of reaction intermediates that are not in isotopic equilibrium with the solution. Though the oxygen isotopic composition of surface oxidation products cannot be taken as a direct biosignature, the combined morphological, chemical and isotopic characterization of the surfaces of oxidized pyrites may furnish clues about a biological activity on a mineral surface.  相似文献   

18.
To understand oxygen and carbon stable isotopic characteristics of aragonite stalagmites and evaluate their applicability to paleoclimate, the isotopic compositions of active and fossil aragonite speleothems and water samples from an in situ multi-year (October 2005-July 2010) monitoring program in Furong Cave located in Chongqing of China have been examined. The observations during October 2005-June 2007 show that the meteoric water is well mixed in the overlying 300-500-m bedrock aquifer, reflected by relatively constant δ18O, ±0.11-0.14‰ (1σ), of drip waters in the cave, which represents the annual status of rainfall water. Active cave aragonite speleothems are at oxygen isotopic equilibrium with drip water and their δ18O values capture the surface-water oxygen isotopic signal. Aragonite-to-calcite transformation since the last glaciation is not noticeable in Furong stalagmites. Our multi-year field experiment approves that aragonite stalagmite δ18O records in this cave are suitable for paleoclimate reconstruction. With high U, 0.5-7.2 ppm, and low Th, 20-1270 ppt, the Furong aragonite stalagmites provide very precise chronology (as good as ±20s yrs (2σ)) of the climatic variations since the last deglaciation. The synchroneity of Chinese stalagmite δ18O records at the transition into the Bølling-Allerød (t-BA) and the Younger Dryas from Furong, Hulu and Dongge Caves supports the fidelity of the reconstructed East Asian monsoon evolution. However, the Furong record shows that the cold Older Dryas (OD) occurred at 14.0 thousand years ago, agreeing with Greenland ice core δ18O records but ∼200 yrs younger than that in the Hulu record. The OD age discrepancy between Chinese caves can be attributable to different regionally climatic/environmental conditions or chronological uncertainty of stalagmite proxy records, which is limited by changes in growth rate and subsampling intervals in absolute dating. Seasonal dissolved inorganic carbon δ13C variations of 2-3‰ in the drip water and 5-7‰ in the pool and spring waters are likely attributed to variable degrees of CO2 degassing in winter and summer. The variable δ13C values of active deposits from −11‰ to 0‰ could be caused by kinetically mediated CO2 degassing processes. The complicated nature of pre-deposition kinetic isotopic fractionation processes for carbon isotopes in speleothems at Furong Cave require further study before they can be interpreted in a paleoclimatic or paleoenvironmental context.  相似文献   

19.
Biologically available nitrogen (fixed N) is removed from the oceans by metabolic conversion of inorganic N forms (nitrate and ammonium) to N2 gas. Much of this removal occurs in marine sediments, where reaction rates are thought to be limited by diffusion. We measured the concentration and isotopic composition of major dissolved nitrogen species in anoxic sediments off the coast of California. At depths below the diffusive penetration of nitrate, we found evidence of a large nitrate pool transported into the sediments by motile microorganisms. A ∼20‰ enrichment in 15N and 18O of this biologically transported nitrate over bottom water values and elevated [N2] and δ15N-N2 at depth indicate that this nitrate is consumed by enzymatic redox reactions with the production of N2 as the end product. Elevated N2O concentrations in pore waters below the nitrate diffusion depth confirm that these reactions include the denitrification pathway. A data-constrained model shows that at least 31% of the total N2 production in anoxic sediments is linked to nitrate bio-transport. Under suboxic/anoxic regimes, this nitrate bio-transport augments diffusive transport, thus increasing benthic fixed nitrogen losses and the reducing burial efficiency of sedimentary organic matter.  相似文献   

20.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号