共查询到20条相似文献,搜索用时 11 毫秒
1.
Michael B. Hay 《Geochimica et cosmochimica acta》2007,71(14):3518-3532
Carboxyls play an important role in the chemistry of natural organic molecules (NOM) in the environment, and their behavior is dependent on local structural environment within the macromolecule. We studied the structural environments of carboxyl groups in dissolved NOM from the Pine Barrens (New Jersey, USA), and IHSS NOM isolates from soils and river waters using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. It is well established that the energies of the asymmetric stretching vibrations of the carboxylate anion (COO−) are sensitive to the structural environment of the carboxyl group. These energies were compiled from previous infrared studies on small organic acids for a wide variety of carboxyl structural environments and compared with the carboxyl spectral features of the NOM samples. We found that the asymmetric stretching peaks for all NOM samples occur within a narrow range centered at 1578 cm−1, suggesting that all NOM samples examined primarily contain very similar carboxyl structures, independent of sample source and isolation techniques employed. The small aliphatic acids containing hydroxyl (e.g., d-lactate, gluconate), ether/ester (methoxyacetate, acetoxyacetate), and carboxylate (malonate) substitutions on the α-carbon, and the aromatic acids salicylate (ortho-OH) and furancarboxylate (O-heterocycle), exhibit strong overlap with the NOM range, indicating that similar structures may be common in NOM. The width of the asymmetric peak suggests that the structural heterogeneity among the predominant carboxyl configurations in NOM is small. Changes in peak area with pH at energies distant from the peak at 1578 cm−1, however, may be indicative of a small fraction of other aromatic carboxyls and aliphatic structures lacking α-substitution. This information is important in understanding NOM-metal and mineral-surface complexation, and in building appropriate structural and mechanistic models of humic materials. 相似文献
2.
Covalent and non-covalent interaction of proteinaceous materials in soils and sediments has been suggested as an important mechanism for immobilizing nitrogen in numerous types of environments. In a previous study (Hsu P.-H., Hatcher, P.G., 2005. New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: A means for preservation. Geochimica et Cosmochimica Acta 69, 4521–4533), we provided molecular evidence for covalent, as well as non-covalent, bonding between 15N-labeled peptides and humic acid molecules using the 2D HSQC (heteronuclear single quantum coherence) NMR technique. In this report, we examine the influence of aromaticity and aliphaticity of peptides and humic materials on these covalent and non-covalent interactions. We use 2D NMR techniques to evaluate bonding interactions of 15N labeled peptides, having different aromatic and aliphatic properties, with three humic acids that vary in degree of aromaticity. The peptide containing primarily aromatic amino acid residues is observed to form covalent and non-covalent bonds with mainly aromatic-rich humic acids. The peptide composed of aliphatic amino acid residues shows, on the other hand, only bonding interactions with aliphatic-rich humic acids. These observations provide the first direct molecular evidence that aliphatic functional groups are involved in bonding with proteinaceous materials. The process may play an important role in sequestration of proteinaceous materials in sedimentary systems such as marine systems where the humic materials are mainly aliphatic in nature. 相似文献
3.
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed. 相似文献
4.
5.
《Comptes Rendus Geoscience》2014,346(3-4):53-63
Natural organic matter (OM) is widespread in terrestrial ecosystems and it plays a major role in the global carbon cycle. Despite this high environmental importance, its characterization at the molecular level remains unsatisfactory, especially when the macromolecular OM is concerned. Such a characterization is challenging because of the diversity and heterogeneity of OM, but it is of prime importance to derive OM reactivity and, more generally, to model environmental processes in which natural OM is involved. This awareness led to a wealth of analytical developments, which are described in the present review. They include improvements of existing techniques, but also new approaches and concern spectroscopic tools along with chemical and thermal degradations. 相似文献
6.
57Fe Mössbauer spectra have been obtained from samples of humic acid, fulvic acid and kerogen and from the organic material extracted from bituminous chalk with benzene-methanol. The spectra indicate that iron occurs in a trivalent form in the silicate residue of the humic acid fraction, as hydrated ferrous ions associated with the fulvic acid fraction, as pyrite in kerogen and in a form not detectable by Mössbauer spectroscopy in the benzene-methanol extract. 相似文献
7.
Measurements of the absorption coefficient of the band around 1710cm?1, combined with adequate chemical treatments, allow an evaluation of the importance of carbonyl, carboxylic acid and ester groups in various series of kerogens. The concentration of carbonyl and acid groups, the concentration of oxygenated functions other than carbonyl or carboxyl, and the total oxygen content are higher in shallow kerogens originating from higher plants than in those containing an important algal contribution; however the concentration of ester groups varies in the opposite direction.The carboxylic acid groups are the most sensitive to catagenetic evolution or pyrolysis. The carbonyl groups are removed progressively as evolution proceeds but a fraction of them is retained up to advanced degrees of evolution.Study of the band at 1630cm?1 has shown that, besides the bending vibration of molecular water, there is some contribution of bridged quinones and unsaturated hydrocarbons. However at least 50% of the absorption coefficient is due to polyaromatic structures. This band is generally much more intense for kerogens originating from higher plants. 相似文献
8.
9.
卤族元素诸如氯和溴作为地球化学示踪剂,常用于指示岩浆、变质岩和热液的来源和演化过程。而认清溴在造岩矿物中的形态和结构有助于丰富和完善其在地质环境演变中的示踪作用。但是,溴在造岩矿物中的含量极低导致大多数结构分析方法都无法使用,因此造岩矿物中微量溴的结构研究极具挑战性。本文采用 81Br魔角旋转核磁共振(MAS NMR)光谱和同步辐射吸收光谱(XAS)技术,首次对富氯造岩矿物中的微量溴进行了结构分析。结果表明溴离子在方硼石中的微区结构不同于该矿物中三配位Cl原子的结构环境,而与Mg3B7O13Br中八面体配位的溴离子相似,表明即使在微量条件下也存在域偏析。而对其他富氯造岩矿物的Br K边X光吸收近边结构(XANES)光谱白线峰的位置和扩展X射线吸收精细结构(EXAFS)分析表明微量溴离子替代了这些矿物中氯的位置,导致局部结构扭曲膨胀。溴离子在造岩矿物中的这一微观结构研究结果可为探索氯和溴在地质演变过程的指示作用提供新的科学依据。 相似文献
10.
Xiang Xu 《Geochimica et cosmochimica acta》2006,70(17):4319-4331
Interaction of dissolved aqueous species with natural organic matter (NOM) is thought to be important in sequestering some species and enhancing the transport of others, but little is known about these interactions on a molecular scale. This paper describes a combined experimental 133Cs and 35Cl nuclear magnetic resonance (NMR) and computational molecular dynamics (MD) modeling study of the interaction of Cs+ and Cl− with Suwannee River NOM. The results provide a detailed picture of the molecular-scale structure and dynamics of these interactions. Individual NOM molecules are typically hundreds to thousands of Daltons in weight, and on the molecular scale their interaction with small dissolved species can be investigated in ways similar to those used to study the interaction of dissolved aqueous species with mineral surfaces. As for such surface interactions, understanding both the structural environments and the dynamics over a wide range of frequencies is essential. The NMR results show that Cs+ is associated with NOM at pH values from 3.4 ± 0.5 (unbuffered Suwannee River NOM solution) to 9.0 ± 0.5. The extent of interaction increases with decreasing CsCl concentration at constant pH. It also decreases with increasing pH at constant CsCl concentration due to pH-dependent negative structural charge development on the NOM caused by progressive deprotonation of carboxylic and phenolic groups. The presence of NOM has little effect on the 133Cs chemical shifts, demonstrating that its local coordination environment does not change significantly due to interaction with the NOM. Narrow, solution-like line widths indicate rapid exchange of Cs+ between the NOM and bulk solution at frequencies of >102 Hz. The MD simulations support these results and show that Cs+ is associated with the NOM principally as outer sphere complexes and that this interaction does not reduce the Cs+ diffusion coefficient sufficiently to cause NMR line broadening. The 35Cl NMR data and the MD results are consistent in demonstrating that there is no significant complexation between Cl− and NOM in the pH range investigated, consistent with negative structural charge on the NOM. 相似文献
11.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl−, F−, OH−, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2−) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter. 相似文献
12.
NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups 总被引:1,自引:0,他引:1
Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group’s IOM. The fraction of aromatic carbon increases as CR2 < CI1 < CM2 < Tagish Lake. The increases in aromatic carbon are offset by reductions in aliphatic (sp3) carbon moieties, e.g., “CHx,” and “CHx(O,N).” Oxidized sp2 bonded carbon, e.g., carboxyls and ketones grouped as “CO,” are largely conservative across these meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 < CI1 < CM2 < Tagish Lake. A pair of independent NMR experiments reveals that, on average, the aromatic moieties in the IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected. 相似文献
13.
Brian P. Kelleher 《Geochimica et cosmochimica acta》2006,70(16):4080-4094
Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D)13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H-15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell components, and provide a powerful tool with which to assess carbon sequestration and transformation in the environment. 相似文献
14.
Tjisse Hiemstra A.M.D. van Rotterdam Willem H. van Riemsdijk 《Geochimica et cosmochimica acta》2010,74(1):59-8428
Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series (Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area (A, m2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces (Γ, μmol/m2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of −1 v.u. at the 1-plane and −0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model).The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl2), with a prediction that uses the experimentally derived surface area (A) and the reversibly bound phosphate loading (Γ, μmol/m2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ∼10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading (Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment.Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO4 interaction is discussed. 相似文献
15.
碱性玄武岩中长石巨晶的结构水:红外光谱和核磁共振谱研究 总被引:3,自引:0,他引:3
运用傅立叶变换红外光谱技术(FTIR,红外区和近红外区)和质子魔角旋转核磁共振技术(^1HMASNMR)对来自安徽女山,江苏盘石山和河北汉诺坝新生代大恶性玄武岩中的4个歪长石巨晶进行了观察,结果显示,这些巨晶含有结构水,主要以H2O的形式存在,其中3个样品的结构水含量(H2O)分别为405μg/g,915μg/g,μg/g。这些数据和文献中已有的资源表明,名义上无水的长石族矿物可以是地球上的水储库 相似文献
16.
M. D. Alba M. A. Castro P. Chain M. Naranjo A. C. Perdigón 《Physics and Chemistry of Minerals》2005,32(4):248-254
Syn-1, is a synthetic mica–montmorillonite interstratified mineral that forms one of the standard clay samples in the Clay Minerals Society Source Clays Project. However, there are still controversies regarding some structural aspects such as the interlayer composition or the location of the extra-aluminium determined by chemical analysis. The main objective of this paper is to shed light on those structural aspects that affect the reactivity of the interstratified minerals. For this purpose, we have used 1 H–29 Si and 1 H–27Al HETCOR MAS NMR to show that it is likely that the interlayer space of the beidellite part is composed of ammonium ions whereas ammonium and aluminium ions are responsible for the charge balance in the mica type layer. 相似文献
17.
《Applied Geochemistry》2001,16(13):1545-1565
Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by gas chromatography and gas chromatography–mass spectrometry. The major organic components directly emitted in smoke particles were straight chain aliphatic compounds from vegetation wax and triterpenoid acids (biomarkers) from gums and mucilages. The major natural products altered by combustion included derivatives from phenolic (lignin) and monosaccharide (cellulose) biopolymers and oxygenated and aromatic products from triterpenoids. Steroid biomarkers and polycyclic aromatic hydrocarbons (PAH) were also present, however, as minor constituents. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are in these cases source specific. The major components are adsorbed or trapped on particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from biomass burning. 相似文献
18.
Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems 总被引:12,自引:0,他引:12
Paolo Nimis 《Contributions to Mineralogy and Petrology》1999,135(1):62-74
The crystal structures of 212 experimentally synthesized, igneous clinopyroxenes were modeled from electronprobe chemical
data. The coexisting melts span a wide range of petrologically relevant, dry and hydrous compositions, characterized by variable
enrichment in silica and alkalis. Experimental conditions pertain to Earth's crust and uppermost mantle (P = 0–24 kbar; garnet absent) and a variety of f
O2 values (from CCO-buffered to air-buffered) and mineral assemblages (Cpx ± Opx ± Pig ± Ol ± Plag ± Spl ± Mt ± Amp ± Ilm).
Unit-cell volume (Vcell) versus M1-polyhedron volume (VM1) relations were investigated over a range of pressures and temperatures using data derived from structure modeling and corrected
for thermal expansivity and compressibility. The relationships between pressure and clinopyroxene structural parameters were
found to be dependent on the nature of the coexisting melt. To reduce compositional effects, only clinopyroxenes belonging
to mildly alkaline (MA) and tholeiitic (TH) series were considered. Pressure was modeled as a linear function of Vcell, VM1, and Mg/(Mg + Fe2+)Cpx ratio. A calibration based on the whole data set (MA + TH) reproduced the experimental pressures within 1.4 kbar at the 1-σ level. The maximum residuals were 3.5 kbar and 3.9 kbar
for MA- and TH-clinopyroxenes, respectively. Better statistics were obtained by considering MA- and TH-clinopyroxenes separately.
A calibration based on the 69 MA-clinopyroxenes reproduced the experimental pressures within 1.1 kbar (1σ) and with a maximum
residual of 2.7 kbar. A calibration based on the 143 TH-clinopyroxenes reproduced the experimental pressures within 1.0 kbar
(1σ) and with a maximum residual of 3.4 kbar. When these geobarometers are applied to natural samples for which P is unknown, the correction for compressibility is necessarily made through a trial-and-error procedure. This expedient propagates
an additional error that increases the above uncertainties and residuals by a factor of about 2. Applications to natural,
igneous rocks for which the pressures of crystallization could be constrained based on experimental, petrological or geological
evidence yielded pressure estimates that reproduced the expected values to within ca. 2 kbar. Compared to the MA-formulation,
the TH-formulation appears to be less robust to variations in magma composition. When applied to high-pressure (>10 kbar)
clinopyroxenes synthesized from very low Na (Na2O < 1.5%) melts, the latter geobarometer can underestimate P by as much as 6 kbar. Calculation of P through the present geobarometers requires clinopyroxene major-element composition and an independent, accurate estimate
of crystallization T. Underestimating T by 20 °C propagates into a 1-kbar increase in calculated P. The proposed geobarometers are incorporated in the CpxBar software program, which is designed to retrieve the pressure of
crystallization from a clinopyroxene chemical analysis.
Received: 11 June 1998 / Accepted: 12 November 1998 相似文献
19.
New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: A means for preservation 总被引:1,自引:0,他引:1
Pang-Hung Hsu 《Geochimica et cosmochimica acta》2005,69(18):4521-4533
Nitrogen immobilization in soils and sediments involving the preservation of peptides is an important yet not well-understood process. Several hypotheses have been proposed for the preservation of peptides in these systems; however, to date, there is no direct molecular-level evidence for any one of several hypotheses. In this study, a synthesized peptide with 15N-labeled amino acid residues was utilized to examine the mechanism by which humic substances from a peat might chemically interact with peptides to induce preservation. Two-dimensional 15N-1H HSQC NMR experiments were performed to evaluate the bonding and nonbonding interactions between 15N-labeled peptide and an Everglades peat humic acid. The observed changes in cross peaks provide the first direct spectroscopic evidence for what we believe to be covalent binding between these substances. Noncovalent interactions between the 15N-labeled peptides and humic acid molecules are also observed in the spectra. Quinone structures in humic acids are suggested to be the important reactive groups, based on reaction of the labeled peptide with a model quinone which shows similar nitrogen-proton correlated peak patterns as is observed in the HSQC NMR spectra of humic acids reacted with the peptide. The Michael reaction with quinone structures is proposed, and this type of reaction provides a mechanism that is consistent with previous observation for the chemistry of sedimentary nitrogen species. 相似文献
20.
Traditionally, iridium has been considered an element of low mobility, but its behavior is still debated. Ir concentration in a soil affected by a catastrophic mining spill in 1998 that covered the soil with a layer of tailings offers the opportunity to analyse an exceptional Ir-bearing horizon 10 years after deposition. This has enabled comparisons with the values of past Ir-bearing horizons associated to impact-related mass-extinction events. Iridium concentration in the tailings (0.349 ppm) was 5-fold higher than the anomaly in the K-Pg at The Moody Creek Mine section (the highest values obtained from terrestrial sections). The oxidative weathering of the tailings caused the release of Ir and infiltration into the soil. Iridium distribution in depth indicates redistribution throughout the profile in relation to the change in the physico-chemical properties of the soil. With regard to the background concentration in the soil (0.056 ppm), anomalous values of Ir (0.129 ppm) can be detected to 11 cm below the layer of tailings. The correlation analysis between the Ir concentration and the main properties and constituents of the soils indicated a significant correlation with sulfur, iron, clay content, and pH. Selective extractions were made to study the forms in which Ir can be mobilized in the soil. The residual/insoluble fraction was >90% of the total Ir concentration in soil. Soluble-in-water concentration of Ir (1.5% of total) was detected in the uppermost 2-3 cm of the soil, which were directly affected by the leaching of acidic waters coming from the oxidation of the pyrite tailings. Iridium retention in the affected part of the soil reached 9% of the total Ir concentration; this retention could be related to the amorphous iron forms dissolved by the oxalic-oxalate extraction. However, according to our research, original Ir abundance could be secondarily modified, and then a direct analysis of the iridium values recorded in sediments could induce misinterpretations. The comparison between the actual example and the fossil record belonging to terrestrial settings, can be considered as a valuable approach, especially when Iridium data were used by researchers to interpret the impact-related mass-extinction events in the past. 相似文献