共查询到20条相似文献,搜索用时 15 毫秒
1.
In aluminous metapelites the ratio H 2O +/K 2O decreases with increasing metamorphic grade and degree of reaction. This ratio is a very practical indicator for the progress of the mineral reconstitution during progressive metamorphism. With decreasing values of the ratio H 2O +/ K 2O the Cu concentration and the following element ratios also decrease either continuously or in stepwise fashion: Tl/K 2O, Ba/K 2O, Pb/K 2O, Bi/K 2O, Hg/K 2O, Sr/Na 2O, Zn/(Fe 2++Mg), Cd/(Fe 2++Mg); Rb/K 2O remains approximately constant. In the aluminous metapelites of the Damara Orogen in Namibia the following losses occur between the biotite isograd and anatexis: 61% Cu, 20% Tl, 34% Ba, 59% Pb, 86% Bi, 46% Hg, 30% Sr, 25% Zn, 31% Cd. Thus the potential of regional metamorphism to form hydrothermal deposits in the low grade environment should not be neglected. 相似文献
3.
Calcite in schists of the metamorphic complex at Naxos is depleted both in 13C and in 18O with respect to massive marbles. This effect is attributed to isotope exchange with circulating CO 2-rich fluids, which had an
>0.5 according to fluid inclusions. The carbon isotopic composition of the calcites is close to equilibrium with fluid inclusion CO 2 at metamorphic temperatures. Mass balance calculations assuming initial
13C values of 0 for calcite and –5 for the fluid, give integrated fluid/rock volume ratios between 0.1 and 2.0. Such high fluid/rock ratios are supported by observations on the distribution of CO 2/H 2O ratios of fluid inclusions, carbon isotopic compositions of fluid inclusion CO 2 and oxygen isotope systematics of silicates. 相似文献
4.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation. 相似文献
5.
Graphite-bearing slates and phyllites (0.4–1.2 vol.% graphite) are progressively metamorphosed in the 3 kbar aureole of the 425 Ma Ballachulish intrusion, Scotland. Two major dehydration reactions are crossed: the chlorite-out reaction at ca. 550 °C (forming cordierite + biotite), and the muscovite-out reaction at 625 °C (forming Al 2SiO 5 + K-feldspar). Graphite persists to the highest grades and shows no significant variation in abundance with grade, except for a possible decrease in the highest grade rocks. Variable graphite abundance in rocks at the same grade reflects primary sedimentological heterogeneity. Texturally, graphite grains and aggregates in the rock matrix become coarser grained and more widely separated as grade increases. These thermally induced textural modifications of graphite are superimposed on mechanically induced features, such as graphite segregations along cleavages and crenulations, that formed prior to contact metamorphism. Mass balance modelling, assuming internal fluid generation, shows that the amount of graphite consumed during contact metamorphism in the aureole ranges between 0.1 and 0.3 vol.%, depending on the amount of chlorite and muscovite in the protolith. Because the amount of C dissolved in a C–O–H fluid decreases with increasing pressure, and the Ballachulish aureole is at relatively low pressure, these results are a maximum for regional metamorphism, suggesting that graphite will persist through a regional metamorphic cycle if it is initially present in volumes > ca. 0.2 vol.%. 相似文献
6.
阿尔泰南缘克兰火山-沉积盆地的泥盆纪VMS型矿床经历了石炭纪一二叠纪同造山的区域变质和热液叠加改造作用,同构造石英脉和穿切层状铅锌矿化的脉状铜矿化很发育.矿石中反映压力-重结晶作用的各种结构构造发育,包括碎斑结构、交代结构、斑状变晶结构和碎裂结构,以及塑性流动构造或皱纹构造、压力影等.对铁木尔特、大东沟铅锌(铜)矿床的包裹体研究表明,在矿化构造岩和晚期硫化物石英脉中发育极丰富的碳质(CO2-(CH4-N2)流体.与碳质流体共生的LCO2-LH2O型包裹体均一温度为243.1~412.1℃(铁木尔特)和209~430℃(大东沟),碳质流体的捕获压力估计为180~300 MPa.这些特征与区域变质的温压条件相当,与VMS无关.同步辐射X射线荧光(SRXRF)单个包裹体的重金属微量元素初步对比分析表明,造山型萨热阔布金矿的碳质流体中检出有Au、As,而在VMS矿床中没有检出,说明碳质流体在区域变质过程中对A-u成矿有贡献. 相似文献
7.
Fluid inclusion salinities from quartz veins in the Otago Schist, New Zealand, range from 1.0 to 7.3 wt% NaCl eq. in the Torlesse terrane, and from 0.4 to 3.1 wt% NaCl eq. in the Caples terrane. Homogenization temperatures from these inclusions range from 124 to 350 °C, with modal values for individual samples ranging from 163 to 229 °C, but coexisting, low-salinity inclusions exhibiting metastable ice melting show a narrower range of T h from 86 to 170 °C with modes from 116 to 141 °C. These data have been used in conjunction with chlorite chemistry to suggest trapping conditions of ≈350–400 °C and 4.1–6.0 kbar for inclusions showing metastable melting from lower greenschist facies rocks, with the densities of many other inclusions reset at lower pressures during exhumation of the schist. The fluid inclusion salinities and Br/Cl ratios from veins from the Torlesse terrane are comparable to those of modern sea-water, and this suggests direct derivation of the vein fluid from the original sedimentary pore fluid. Some modification of the fluid may have taken place as a result of interaction with halogen-bearing minerals and dehydration and hydration reactions. The salinity of fluids in the Caples terrane is uniformly lower than that of modern sea-water, and this is interpreted as a result of the dilution of the pore fluid by dehydration of clays and zeolites. The contrast between the two terranes may be a result of the original sedimentary provenance, as the Torlesse terrane consists mainly of quartzofeldspathic sediments, whilst the Caples terrane consists of andesitic volcanogenic sediments and metabasites which are more prone to hydration during diagenesis, and hence may provide more fluid via dehydration at higher grades. 相似文献
8.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H 2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO 2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO 2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N 2 in the dominantly CO 2-rich fluid. Homogenization of pure CO 2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO 2 densities in the range of 0.95-1.07 g/cm 3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO 2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO 2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO 2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO 2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H 2O activity through the influx of CO 2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex. 相似文献
9.
ABSTRACT Graphitic metapelites from the Howard Ridge area, British Columbia, have been studied to estimate the pressure, temperature and fluid composition attending amphibolite facies metamorphism. Results from thermobarometric calculations indicate that P-T conditions of 610–625°C and 6.7kbar were reached during metamorphism. The equilibrium paragonite-quartz-albite-kyanite-H 2O gives significantly different estimates of XH 2O in the metamorphic fluid using different paragonite solution models. Estimates of XH 2O range from a maximum of 0.93 (Eugster et al., 1972) to a minimum of 0.29 (Chatterjee & Flux, 1986). H 2O estimates obtained using the Eugster et al. (1972) and Chatterjee & Froese (1975) solution models give similar results (i.e. 0.8 ± 0.1 versus 0.7 ± 0.1, respectively). Non-ideal mixing in the C-O-H system provides an XH 2O estimate of 0.74 at H 2O maximum conditions, 0.5 log units below the QFM buffer. The Chatterjee & Flux (1986) paragonite solution model provides unrealistically low estimates of XH 2O relative to other paragonite solution models, C-O-H equilibria, and published fluid inclusion and mineral equilibria data. Consistent estimates of fluid composition between C-O-H and mineral equilibria suggest that a H 2O-rich fluid attended metamorphism of graphitic metapelites at Howard Ridge. 相似文献
10.
Three successive metamorphic stages M1, M2 and M3 have been distinguished in polymetamorphic granulite facies quartz-feldspathic gneisses from the Seiland Igneous Province, Caledonides of northern Norway. An early period of contact metamorphism (M1; 750–950°C, ca. 5 kbar) was followed by cooling, accompanied by strong shearing and recrystallization at intermediate- P granulite facies conditions (M2; 700–750°C, 5–6kbar). High- P granulite facies (M3; ca. 700°C, 7–8 kbar) is related to recrystallization in narrow ductile shear zones and secondary growth on M2 minerals. On the basis of composition, fluid inclusions in cordierite, quartz and garnet can be divided into three major types: (1) CO 2 inclusions; (2) mixed CO 2–N 2 inclusions; (3) N 2 inclusions. Fluid chronology and mineral assemblages suggest that the earliest inclusions consist of pure CO 2 and were trapped at the M1 contact metamorphic episode. A carbonic fluid was also present during the intermediate- P granulite facies M2 metamorphism. The CO 2-rich inclusions in M2 garnet can be divided into two generations, an early lower-density and a late higher-density, with isochores crosscutting the P-T box of M2 and M3, respectively. The nitrogen-rich fluids were introduced at a late stage in the fluid evolution during the high- P M3 event. The mixed CO 2–N 2 inclusions, with density characteristics compatible with M3 conditions, are probably produced from intersection between pre-existing pure CO 2 inclusions and N 2 fluids introduced during M3. The fluid inclusion data agree with the P-T evolution established from mineral assemblages and mineral chemistry. 相似文献
11.
超高温(≥900℃)变质作用发生在自太古代以来的各个地质历史时期,目前极可能也正发生在青藏高原地壳深部。同时,它也是以冈瓦纳为代表的超大陆在最终拼合时的显著标识,这一关联指示了超高温变质作用与碰撞造山带的密切关系。本文总结了东冈瓦纳内与泛非造山作用有关的典型超高温变质岩的分布、岩石学特征、峰期变质条件、 P-T轨迹及形成时代,并简要介绍我们在柴达木地块西段新识别出的泛非期超高温变质作用的基本特征。结合东冈瓦纳超高温变质作用特征和造山带热模拟研究的新进展,本文获得以东冈瓦纳超高温变质作用为代表的碰撞造山带超高温变质作用的几点认识:1)东冈瓦纳麻粒岩地块中的超高温变质岩和普通麻粒岩记录了相似的变质年龄、 P-T轨迹以及呈过渡变化的峰期温度,两者可能是同一构造事件的产物,共同组成一个高温-超高温变质岩单元;2)超高温变质作用在东冈瓦纳内部持续了至少超过30Myr,但未见呈大规模的同期或近同期基性岩岩浆出露,指示此处需要的长期热源不是地幔来源岩浆;3)虽然数值模拟能成功呈现加厚地壳被放射元素衰变热加热至超高温条件的情况,且加热及持续时间与东冈瓦纳超高温变质约束的结果相当,但是模拟中需要的高生热值暗示,在自然界中,完全只靠放射性元素衰变生热或许不能让碰撞造山带内达到超高温条件;4)碰撞造山带经历了长期的构造演化,这一过程中,造山带内地壳不太可能同时达到超高温变质条件,这一特征可能反映在 P-T-t轨迹的差异上,对这些轨迹的系统研究有助于对超高温变质作用的构造-热过程的理解。 相似文献
12.
Prograde mineral assemblages and compositions have been predicted for pelitic schist in the 10 component system Na 2O–K 2O–CaO–MnO–FeO–MgO–Al 2O 3–SiO 2–CO 2–H 2O for three cases of prograde metamorphism and fluid-rock interaction: (1) increasing temperature ( T) at constant pressure ( P) and constant pore fluid volume (1%) without infiltration (no-infiltration case); (2) increasing T at constant P accompanied by sufficient fluid infiltration that fluid composition is at all times constant (large-flux case); and (3) increasing T at constant P accompanied by a timeintegrated fluid flux f 10 4 cm 3
cm
2 (intermediate-flux case). Stable mineral assemblages and compositions were calculated by solving a system of non-linear equations that specify mass balance and chemical equilibrium between minerals and fluid. The model pelitic system includes quartz, muscovite, plagioclasc, chlorite, ankerite, siderite, biotite, garnet, staurolite, andalusite, kyanite, sillimanite, K-feldspar, and a coexisting, binary H 2O–CO 2 fluid. Specifically, prograde thermal metamorphism was modelled for Shaw's (1956) average low-grade pelite and for a moderate range of bulk rock compositions at P=3, 5, and 7 kb and initial fluids with Xco
2
o
=0.02–0.40. The model predicts a carbonate-bearing mineral assemblage for average pelite under chlorite zone conditions composed of quartz, muscovite, albite, chlorite, ankerite, and siderite. The mineral assemblages predicted for the noinfiltration case are unlike those typically observed in regional metamorphic terranes. Simulations of metamorphism for the large-flux and intermediate-flux cases, however, reproduce the sequence of mineral assemblages observed in normal Barrovian regional metamorphic terranes. These results suggest that regional metamorphism of pelitic schists is typically associated with infiltration of significant quantities of aqueous fluid. 相似文献
13.
The Chinese Continental Scientific Drilling (CCSD) main drill hole (0–3000 m) in Donghai, southern Sulu orogen, consists of eclogite, paragneiss, orthogneiss, schist and garnet peridotite. Detailed investigations of Raman, cathodoluminescence, and microprobe analyses show that zircons from most eclogites, gneisses and schists have oscillatory zoned magmatic cores with low-pressure mineral inclusions of Qtz, Pl, Kf and Ap, and a metamorphic rim with relatively uniform luminescence and eclogite-facies mineral inclusions of Grt, Omp, Phn, Coe and Rt. The chemical compositions of the UHP metamorphic mineral inclusions in zircon are similar to those from the matrix of the host rocks. Similar UHP metamorphic P– T conditions of about 770 °C and 32 kbar were estimated from coexisting minerals in zircon and in the matrix. These observations suggest that all investigated lithologies experienced a joint in situ UHP metamorphism during continental deep subduction. In rare cases, magmatic cores of zircon contain coesite and omphacite inclusions and show patchy and irregular luminescence, implying that the cores have been largely altered possibly by fluid–mineral interaction during UHP metamorphism. Abundant H2O–CO2, H2O- or CO2-dominated fluid inclusions with low to medium salinities occur isolated or clustered in the magmatic cores of some zircons, coexisting with low-P mineral inclusions. These fluid inclusions should have been trapped during magmatic crystallization and thus as primary. Only few H2O- and/or CO2-dominated fluid inclusions were found to occur together with UHP mineral inclusions in zircons of metamorphic origin, indicating that UHP metamorphism occurred under relatively dry conditions. The diversity in fluid inclusion populations in UHP rocks from different depths suggests a closed fluid system, without large-scale fluid migration during subduction and exhumation. 相似文献
14.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H 2O) of ~6–7 mol.% H 2O from high‐ T–low‐ P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680 °C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H 2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐ P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H 2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐ P assemblages in metapelites at the eclogite type‐locality. 相似文献
15.
Addition of CH 4 to CO 2 lowers the temperatures at which phase changes occur with respect to those in the unary system CO 2. At high density and high
a melting interval of solid CO 2 can be expected.
Rearrangement of currently available theoretical and experimental data permits bulk compositions of carbonic fluid inclusions
to be determined from the final melting temperature of CO 2 and the degree of filling at that temperature.
Homogenization temperatures of CO 2-CH 4 inclusions can be expressed in terms of equivalent CO 2-densities, permitting estimates of P- T relations using isochores in the unary system CO 2. 相似文献
16.
南黄海盆地勿南沙隆起古生界地层的地热和地球化学异常一直受到众多地质学家和地球化学家的关注。本文联用显微测温和激光拉曼光谱技术对南黄海盆地勿南沙隆起的常州(CZ)-2-1井二叠系栖霞组灰岩石英脉中的流体包裹体进行了详细研究。根据岩石学特征、室温下包裹体相态特征和成分差别,这些包裹体可以分成三大类六小类。流体包裹体拉曼光谱分析结果表明包裹体中含有甲烷和有机物,证明了该区曾经有含烃类流体活动。显微测温分析表明流体包裹体的均一温度在214℃~305℃之间,远高于该区正常沉积的盆地古地温,暗示包裹体捕获了热液流体。根据岩石学观察和测温分析结果,样品中主要存在三期流体包裹体,其均一温度和流体的甲烷浓度分别为:214℃,0.1347mol/L;265℃,0.1722mol/L;305℃,0.3370mol/L。包裹体甲烷浓度随均一温度升高呈增大的趋势。本次研究证实南黄海盆地勿南沙隆起区曾存在含烃热液流体活动,这些实验结果可以为合理解释热异常和地球化学异常提供证据。 相似文献
17.
选取西藏冈底斯斑岩成矿带东段的邦铺矿床斑岩矿区2条勘探线上的11个钻孔,进行了详细的岩芯编录和矿物组合、脉体穿切关系研究,将该矿床内与斑岩成矿相关的脉体划分为A、B、D脉3种类型。通过对矽卡岩矿区的详细地表及平硐观察,发现了石榴子石、阳起石、绿帘石等一系列代表流体演化特征的矿物。邦铺矿床具有典型斑岩型矿床的蚀变分带特征,从中心向外依次表现为黑云母化-硅化-绢云母化-青磐岩化,泥化呈"补丁状"无规则分布在绢云母化和青磐岩化之上。矽卡岩化则以典型矽卡岩矿物的出现为特征。A脉中绝大多数包裹体均一温度为320~550℃,盐度主要集中在两个区间内,分别为17.0%~22.0%(气液两相包裹体)和30.8%~67.2%(含子晶包裹体);B脉中绝大多数包裹体均一温度为380~550℃,盐度主要集中在1.6%~10.1%、23.2%~24.5%(气液两相包裹体)和30.8%~67.2%(含子晶包裹体)3个区间内;D脉中绝大多数包裹体均一温度为213~450℃,盐度为7.3%~11.6%。流体包裹体研究表明,与斑岩成矿的相关流体具有从高温、高盐度向低温、低盐度演化的特征;形成A、B脉的流体发生了强烈的沸腾作用,由此导致的压力波动是Mo、Cu沉淀的主要原因。16件与斑岩成矿相关的石英δDV-SMOW=-107.1‰~-185.8‰,δ18OV-SMOW=9.5‰~14.5‰;15件与矽卡岩成矿相关的石榴子石、绿帘石、石英及方解石δDV-SMOW=-184.7‰~-126‰,δ18OV-SMOW=3.9‰~12.9‰;4件斑岩成矿后期的方解石δ18OV-SMOW=-1.6‰~10.4‰,δCV-PDB=-6.5‰~-3.4‰;6件与矽卡岩成矿相关的方解石δ18OV-SMOW=1.8‰~11.9‰,δCV-PDB=-5.1‰~4.6‰。C_H_O同位素分析数据表明,邦铺整个斑岩-矽卡岩成矿系统流体主要经历了岩浆脱水去气和大气降水加入这两大地质过程。 相似文献
18.
ABSTRACT P-T conditions inferred from fluid inclusions in metamorphic rocks often disagree with the values predicted from mineral equilibria calculations. These observations suggest that inclusions formed during early stages of regional metamorphism continue to re-equilibrate during burial and subsequent uplift in response to differential pressure. P-T conditions accompanying burial and uplift were experimentally simulated by initially forming pure H 2O inclusions in quartz at elevated temperatures and pressures, and then re-equilibrating the inclusions in the presence of a 20 wt% NaCl solution such that final confining pressures ranged from 5 kbar above to 4 kbar below the initial internal pressure of the inclusions at the temperature of re-equilibration. In all samples re-equilibrated at confining pressures below the internal pressure, some inclusions were formed that had compositions of 20 wt% NaCl and densities in accord with the final P-T conditions. Additionally, some inclusions were observed to contain fluids of intermediate salinities (between 0 and 20 wt% NaCl). Densities of these inclusions were also consistent with formation at the re-equilibration P-T conditions. The remainder of the fluid inclusions observed in these samples contained pure H 2O and their homogenization temperatures corresponded to densities intermediate between the initial and final P-T conditions. In short-term experiments (7 days) where the initial internal overpressure exceeded 1 kbar, no inclusions were found that contained the original density and none were found to have totally re-equilibrated. Instead, most H 2O inclusions re-equilibrated until their internal pressures were between ∼750 and 1500 bars above the confining pressure, regardless of the initial pressure differential. In a long-term experiment (52 days), inclusions re-equilibrated at a lower confining pressure than the initial internal pressure displayed homogenization temperatures corresponding to a range in final internal pressures between 0 kbar (i.e. total re-equilibration) and 1.2 kbar above the confining pressure. In experiments where the confining pressure during re-equilibration exceeded the initial internal pressure, densities of pure H 2O inclusions increased to values intermediate between the initial and final P-T conditions. Additionally, these inclusions were generally surrounded by a three-dimensional halo of smaller inclusions, also of intermediate density, resulting in a texture similar to that previously ascribed to decrepitation from internal overpressure. In extreme cases where confining pressures were 4–5 kbar above the initial pressure, the parent inclusion almost completely closed leaving only the three-dimensional array of small (5 μm) inclusions, the outline of which may be several times the volume of the original inclusion. Groups of such inclusions closely resemble textures commonly observed in medium- to high-grade metamorphic rocks. Inclusions containing 10 and 42 wt% NaCl solutions trapped at 600 °c and 3 kbar were re-equilibrated at 600 °c and 1 kbar for 5 days in dry argon to evaluate the importance of H 2O diffusion as a mechanism of lowering the inclusion bulk density. Salinities of re-equilibrated inclusions obtained from freezing point depressions and halite dissolution temperatures indicate that original compositions were preserved. Density changes similar to those previously described were noted in these experiments, in inclusions showing no visible microfractures. Therefore, density variations observed in inclusions in this study, re-equilibrated under rapid deformation conditions, are considered to result from a change in the inclusion volume, without significant loss of contents by diffusion or leakage. 相似文献
19.
赋存于碱性玄武岩中被岩浆带到地表的地幔橄榄岩捕掳体中发育有大量的包裹体,这些包裹体为地幔流体研究提供了直接信息。本文对江苏六合地区地幔捕掳体中的CO2包裹体开展了详细的岩相学、显微测温学及激光拉曼光谱学工作,并对获得的数据进行计算分析。结果显示地幔橄榄岩矿物中发育有两类流体包裹体:早期原生CO2包裹体,晚期次生CO2包裹体。本次研究通过对这两类包裹体的分析,初步探讨了CO:包裹体的成因,并对六合地区及中国东部上地幔岩石圈演化提供了进一步的P—T限制:早期包裹体捕获于≥0.83GPa(对应28km深处)压力,晚期包裹体形成于6~18km深处的再平衡过程。 相似文献
20.
湖南康家湾铅锌金银矿床位于南岭成矿带北部中段,是水口山矿田内发现较晚的大型隐伏矿床.该矿床的矿物组合及矿化特征复杂,前人对其成矿流体特征及成因类型存在不同认识.文章通过野外地质调查和矿物矿相学研究发现该矿床的热液成矿阶段较多,方铅矿主要形成于早期闪锌矿与晚期闪锌矿之间,而金和银的成矿阶段分别与早期闪锌矿和方铅矿趋于一致... 相似文献
|