首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

2.
Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.  相似文献   

3.
Citrate released by plants, bacteria, and fungi into soils is subject to abiotic oxidation by MnO2(birnessite), yielding 3-ketoglutarate, acetoacetate, and MnII. Citrate loss and generation of products as a function of time all yield S-shaped curves, indicating autocatalysis. Increasing the citrate concentration decreases the induction period. The maximum rate (rmax) along the reaction coordinate follows a Langmuir-Hinshelwood dependence on citrate concentration. Increases in pH decrease rmax and increase the induction time. Adding MnII, ZnII, orthophosphate, or pyrophosphate at the onset of reaction decreases rmax. MnII addition eliminates the induction period, while orthophosphate and pyrophosphate addition increase the induction period. These findings indicate that two parallel processes are responsible. The first, relatively slow process involves the oxidation of free citrate by surface-bound MnIII,IV, yielding MnII and citrate oxidation products. The second process, which is subject to strong positive feedback, involves electron transfer from MnII-citrate complexes to surface-bound MnIII,IV, generating MnIII-citrate and MnII. Subsequent intramolecular electron transfer converts MnIII-citrate into MnII and citrate oxidation products.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(11-12):1671-1687
X-ray Photoelectron Spectroscopy (XPS) was used to investigate oxidation of aqueous Cr(III) at the surface of 7 Å-birnessite [MnO1.75(OH)0.25]. Special emphasis was placed on detection of intermediate oxidation states of chromium due to their critical environmental significance. No previous studies have been able to identify these intermediate oxidation states of chromium (namely, Cr[IV] and Cr[V]) on mineral surfaces or in natural solutions. Mn(2p3/2), Cr(2p3/2) and O(1s) spectra of the reacted surfaces reveal that Mn(IV) of synthetic birnessite undergoes reductive dissolution in two steps. The first step involves Mn(IV) reduction to Mn(III),that forms at the oxide surface probably as an oxyhydroxide (MnOOH), and in the second step Mn(III) is reduced to Mn(II) that is subsequently taken into solution. Each reductive reaction step involves transfer of only one electron to the Mn ion. After Cr(III)aq is adsorbed onto the MnO2 surface, it undergoes oxidation in three separate steps, each involving the loss of one electron to Mn ions, so that Cr(IV), Cr(V) and Cr(VI) are produced. The intermediate reaction products, namely Mn(III), and Cr(V) were positively identified by XPS spectral analyses. Similarity in XPS binding energy values of Cr(III) and Cr(IV) as well as that of Cr(V) and Cr(VI), however, preclude separate identification of Cr(III) from Cr(IV) and Cr(VI) from Cr(V) multiplets on the near-surface of the solid. A parallel reaction scheme (exclusive of sorption reactions) best describes the birnessite-Cr(III)aq redox reactions. The two parallel reactions proceed by separate mechanisms with a monodentate complex formed in one mechanism and a bidentate complex in another. The bulk of Cr(IV) probably is formed via the monodentate complex and Cr(V) via the bidentate complex. The rate expressions associated with these reactions display near-perfect correlation with changing surface abundances of Cr(IV) and Cr(V) as a function of reaction time. Copyright © 1999 Elsevier Science Ltd.  相似文献   

5.
Strong enrichments of cobalt occur in marine manganese nodules, soils, wads, and natural and synthetic minerals such as hollandite, cryptomelane, psilomelane, lithiophorite, birnessite, and δ-MnO2. Previously, it was suggested that Co3+ ions in these minerals replace either Mn3+ or substitute for Fe3+ in incipient goethite epitaxially intergrown with δ-MnO2. Neither of these interpretations is now considered to be satisfactory on account of the large discrepancy of ionic radius between octahedrally coordinated low-spin Co3+ and high-spin Mn3+ or Fe3+ in oxide structures. The close agreement between the ionic radii of Co3+ and Mn4+ suggests that some cobalt substitutes for Mn4+ ions in edge-shared [MnO6] octahedra in many manganese(IV) oxide mineral structures. It is proposed that hydrated cations, including Co2+ ions, are initially adsorbed on to the surfaces of certain Mn(IV) oxides in the vicinity of essential vacancies found in the chains or sheets of edge-shared [MnO6] octahedra. Subsequently, fixation of cobalt takes place as a result of oxidation of adsorbed Co2+ ions by Mn4+ and replacement of the displaced manganese by low-spin Co3+ ions in the [MnO6] octahedra or vacancies.  相似文献   

6.
The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by the subsurface bacterium Shewanella putrefaciens strain CN32 was investigated using synthetic Mn(III/IV) oxides (pyrolusite [β-MnO2], bixbyite [Mn2O3] and K+-birnessite [K4Mn14O27 · 8H2O]). In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO2[s]) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence or in the presence of gibbsite (Al[OH]3) added as a non-redox-reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43 to 100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. However, in the absence of Mn(III/IV) oxides, UO2(s) accumulated as copious fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments. However, the accumulation of U(IV) in the cell periplasm may physically protect reduced U from oxidation, promoting at least a temporal state of redox disequilibria.  相似文献   

7.
The catalytic properties of spores of a marine Bacillus known to oxidize divalent manganese were used to perform laboratory Mn(II) oxidation experiments at environmental conditions of pH and Mn(II) concentration. We found that at pH 7.8 the initial kinetics of Mn(II) oxidation facilitated by the spores was four orders of magnitude greater than that which would be expected for abiotic autocatalysis on a colloidal MnO2 surface. The rate progressively decreased as the spores became coated with manganese oxide, eventually becoming very near that predicted for abiotic surface catalysis. Transmission electron microscopic observations and oxidation state measurements of solids precipitated at pH 7.5 and [Mn(II)] < 50 nM indicated that the initial oxidation product was hausmannite (Mn3O4 or MnOx where x = 1.33) which aged to more highly oxidized MnO2 (x = 1.9) in the time scale of weeks. By utilizing spores to catalyze the oxidation rate, we were able to maintain our experimental system within the seawater range of pH and Mn(II) where highly oxidized manganese oxide precipitates are thermodynamically stable. In doing so we obtained, for the first time, laboratory precipitates with oxidation states similar to that found in marine particulate material. These results suggest that the concentration of manganese in seawater and the oxidation state of marine manganese oxides are controlled by the rapid precipitation of Mn3O4, which can be microbially mediated, followed by the disproportionation to MnO2.  相似文献   

8.
Manganese oxides, typically similar to δ-MnO2, form in the aquatic environment at near neutral pH via bacterially promoted oxidation of Mn(II) species by O2, as the reaction of [Mn(H2O)6]2+ with O2 alone is not thermodynamically favorable below pH of ~?9. As manganese oxide species are reduced by the triphenylmethane compound leucoberbelein blue (LBB) to form the colored oxidized form of LBB (λmax?=?623 nm), their concentration in the aquatic environment can be determined in aqueous environmental samples (e.g., across the oxic–anoxic interface of the Chesapeake Bay, the hemipelagic St. Lawrence Estuary and the Broadkill River estuary surrounded by salt marsh wetlands), and their reaction progress can be followed in kinetic studies. The LBB reaction with oxidized Mn solids can occur via a hydrogen atom transfer (HAT) reaction, which is a one-electron transfer process, but is unfavorable with oxidized Fe solids. HAT thermodynamics are also favorable for nitrite with LBB and MnO2 with ammonia (NH3). Reactions are unfavorable for NH4+ and sulfide with oxidized Fe and Mn solids, and NH3 with oxidized Fe solids. In laboratory studies and aquatic environments, the reduction of manganese oxides leads to the formation of Mn(III)-ligand complexes [Mn(III)L] at significant concentrations even when two-electron reductants react with MnO2. Key reductants are hydrogen sulfide, Fe(II) and organic ligands, including the siderophore desferioxamine-B. We present laboratory data on the reaction of colloidal MnO2 solutions (λmax?~?370 nm) with these reductants. In marine waters, colloidal forms of Mn oxides (<?0.2 µm) have not been detected as Mn oxides are quantitatively trapped on 0.2-µm filters. Thus, the reactivity of Mn oxides with reductants depends on surface reactions and possible surface defects. In the case of MnO2, Mn(IV) is an inert cation in octahedral coordination; thus, an inner-sphere process is likely for electrons to go into the empty e g * conduction band of its orbitals. Using frontier molecular orbital theory and band theory, we discuss aspects of these surface reactions and possible surface defects that may promote MnO2 reduction using laboratory and field data for the reaction of MnO2 with hydrogen sulfide and other reductants.  相似文献   

9.
Oxic limestone beds are commonly used for the passive removal of Mn(II) from coal mine drainage (CMD). Aqueous Mn(II) is removed via oxidative precipitation of Mn(III/IV) oxides catalyzed by Mn(II)-oxidizing microbes and Mn oxide (MnOx) surfaces. The relative importance of these two processes for Mn removal was examined in laboratory experiments conducted with sediments and CMD collected from eight Mn(II)-removal beds in Pennsylvania and Tennessee, USA. Sterile and non-sterile sediments were incubated in the presence/absence of air and presence/absence of fungicides to operationally define the relative contributions of Mn removal processes. Relatively fast rates of Mn removal were measured in four of the eight sediments where 63–99% of Mn removal was due to biological oxidation. In contrast, in the four sediments with slow rates of Mn(II) removal, 25–63% was due to biological oxidation. Laboratory rates of Mn(II) removal were correlated (R2 = 0.62) to bacterial biomass concentration (measured by phospholipid fatty acids (PLFA)). Furthermore, laboratory rates of Mn(II) removal were correlated (R2 = 0.87) to field-scale performance of the Mn(II)-removal beds. A practical recommendation from this study is to include MnOx-coated limestone (and associated biomass) from an operating bed as “seed” material when constructing new Mn(II)-removal beds.  相似文献   

10.
The oxidation of Mn(II) by O2 to Mn(III) or Mn(IV) is thermodynamically favored under the pH and pO2 conditions present in most near surface waters, but the kinetics of this reaction are extremely slow. This work investigated whether reactive oxygen species, produced through illumination of humic substances, could oxidize Mn at an environmentally relavent rate. The simulated sunlight illumination of a solution containing 200 μM Mn(II) and 5 mg/L Aldrich humic acid buffered at pH 8.1 produced ∼19 μM of oxidized Mn (MnOx where x is between one and two) after 45 minutes. The major oxidants reponsible for this reaction appear to be photoproduced superoxide radical anion, O2, and singlet molecular oxygen, 1O2. The dependencies of MnOx formation on Mn(II), humic acid, and H+ concentration were characterized. A kinetic model based largely on published rate constants was established and fit to the experimental data. As expected, analysis of the model indicates that the key reaction rate controlling MnOx production is the rate of decomposition of a MnO2+ complex formed from the reaction of Mn(II) with O2. This rate is strongly dependent on the Mn(II) complexing ligands in solution. The MnOx production in the seawater sample taken from Bodega Bay, USA and spiked with 200 μM Mn(II) was well reproduced by the model. Extrapolations from the model imply that Mn photo-oxidation should be a significant reaction in typical surface seawaters. Calculated rates, 5.8 to 55 pM h−1, are comparable to reported rates of biological Mn oxidation, 0.07 to 89 pM h−1. Four fresh water samples that were spiked with 200 μM Mn(II) also showed significant MnOx production. Based on these results, it appears that Mn photo-oxidation could constitute a significant, and apparently unrecognized geochemical pathway in natural waters.  相似文献   

11.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   

12.
The initial solid phase oxidation products formed during the oxidation of aqueous Mn(II) at 25°C were studied as a function of time. The analyses included morphology (TEM), mineralogy (x-ray diffraction), OMn ratio (iodometric method), oxidation state of manganese (XPS), and dissolved manganese. The initial solid formed under our conditions was Mn3O4 (hausmannite) which converted completely to γMnOOH (manganite) after eight months. βMnOOH (feitknechtite) appeared to be an intermediate in this transformation. The OMn ratio was initially 1.37 and increased to 1.49 over the same time span. Throughout the course of this study the XPS analyses showed that the surface of the solids (<50 Å) was dominated by Mn(III). The solution pH and dissolved manganese concentrations were consistent with disproportionation and oxidation reactions that favor the transformation of Mn3O4 to γMnOOH but not to γMnO2.  相似文献   

13.
In the aquatic geochemical literature, a redox half-reaction is normally written for a multi-electron process (n > 2); e.g., sulfide oxidation to sulfate. When coupling two multi-electron half-reactions, thermodynamic calculations indicate possible reactivity, and the coupled half-reactions are considered favorable even when there is a known barrier to reactivity. Thermodynamic calculations should be done for one or two-electron transfer steps and then compared with known reactivity to determine the rate controlling step in a reaction pathway. Here, thermodynamic calculations are presented for selected reactions for compounds of C, O, N, S, Fe, Mn and Cu. Calculations predict reactivity barriers and agree with one previous analysis showing the first step in reducing O2 to O2 ? with Fe2+ and Mn2+ is rate limiting. Similar problems occur for the first electron transfer step in these metals reducing NO3 ?, but if reactive oxygen species form or if two-electron transfer steps with O atom transfer occur, reactivity becomes favorable. H2S and NH4 + oxidation in a one-electron transfer step by O2 is also not favorable unless activation of oxygen can occur. H2S oxidation by Cu2+, Fe(III) and Mn(III, IV) phases in two-electron transfer steps is favorable but not in one-electron steps indicating that (nano)particles with bands of orbitals are needed to accept two electrons from H2S. NH4 + oxidation by Fe(III) and Mn(III, IV) phases is generally not favorable for both one- and two-electron transfer steps, but their reaction with hydroxylamine and hydrazine to form N2O and N2, respectively, is favorable. The anammox reaction using hydroxylamine via nitrite reduction is the most favorable for NH4 + oxidation. Other chemical processes including photosynthesis and chemosynthesis are considered for these element–element transformations.  相似文献   

14.
Sorption of rare earth elements (REEs) and Ce oxidation on natural and synthetic Mn oxides have been investigated by many researchers. Although Mn(II)-oxidizing microorganisms are thought to play an important role in the formation of Mn oxides in most natural environments, Ce oxidation by biogenic Mn oxide and the relevance of microorganisms to the Ce oxidation process have not been well understood. Therefore, in this study, we conducted sorption experiments of REEs on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. The distribution coefficients, Kd(REE), between biogenic Mn oxide (plus hyphae) and 10 mmol/L NaCl solution showed a large positive Ce anomaly and convex tetrad effect variations at pH 3.8, which was consistent with previous works using synthetic Mn oxide. The positive Ce anomaly was caused by oxidation of Ce(III) to Ce(IV) by the biogenic Mn oxide, which was confirmed by analysis of the Ce LIII-edge XANES spectra. With increasing pH, the positive Ce anomaly and convex tetrad effects became less pronounced. Furthermore, negative Ce anomalies were observed at a pH of more than 6.5, suggesting that Ce(IV) was stabilized in the solution (<0.2 μm) phase, although Ce(III) oxidation to Ce(IV) on the biogenic Mn oxide was confirmed by XANES analysis. It was demonstrated that no Ce(III) oxidation occurred during sorption on the hyphae of strain KR21-2 by the Kd(REE) patterns and XANES analysis. The analysis of size exclusion HPLC-ICP-MS showed that some fractions of REEs in the filtrates (<0.2 μm) after sorption experiments were bound to organic molecules (40 and <670 kDa fractions), which were possibly released from hyphae. A line of our data indicates that the negative Ce anomalies under circumneutral pH conditions arose from Ce(III) oxidation on the biogenic Mn oxide and subsequent complexation of Ce(IV) with organic ligands. The suppression of tetrad effects is also explained by the complexation of REEs with organic ligands. The results of this study demonstrate that the coexistence of the biogenic Mn oxide and hyphae of strain KR21-2 produces a specific redox chemistry which cannot be explained by inorganic species.  相似文献   

15.
X-ray photoelectron spectroscopy (XPS) measurements of cobalt adsorbed on MnO2 reveal strong evidence that Co(II) has been oxidized to Co(III). The manganese spectra are characteristic of Mn(IV). Model calculations suggest that Co(II) cannot be oxidized by O2 to Co(III) in bulk solution at seawater concentrations but that the oxidation can proceed in the presence of the strong electric field at the MnO2-solution interface. Ni(II), however, cannot be oxidized at the interface except at very high concentrations. These calculations suggest that the oxidation of Co(II) can explain the geochemical separation of cobalt from nickel.  相似文献   

16.
Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO6 octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite (δ-MnO2), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c axis and a lack of c periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide → 10-Å triclinic phyllomanganate → todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.  相似文献   

17.
The influence of bottom water anoxia on manganese (Mn), iron (Fe), and sulfur (S) biogeochemistry was examined in defaunated sandy sediment from Kærby Fed, Denmark, under controlled laboratory incubations. The initial narrow peaks and steep gradients in solid Mn(IV) and Fe(III) as well as porewater Mn2+ and Fe2+ observed in the upper 2–5 cm of the sediment indicate rapid metal reduction-oxidation cycles under oxic conditions in the overlying water. The fe zones were generally displaced about 0.5 cm downward compared with the Mn zones due to differences in reactivity. Mn(IV) was reduced and gradually disappeared first (within 10 d) when the sediment was exposed to anoxia followed by reduction and disappearance of Fe(III) (day 7 to 18). The associated loss of Mn2+ to the overlying water was most rapid during the first 15 d, whereas the Fe2+ efflux initiated around day 10, and after a few days with modest rates the efflux peaked around day 20. A considerable portion of the total Mn (26%) and Fe (23%) inventory initially present in the sediment was lost by efflux after about 1 mo of anoxia. The ability of the sediment to retain upward diffusion of H2S gradually disappeared in a temporal pattern closely related to the changes in pool size of the reactive Mn and Fe present. The total metal pool in Kærby Fed sediment prevented H2S release to the overlying water for at least a month of anoxia. It is speculated that external supplies from the overlying water allows a rapid refuelling of surface Mn and Fe oxides in the field when oxic conditions returns between periods of anoxia.  相似文献   

18.
Manganese (oxy)hydroxides (MnOX) play important roles in the oxidation and mobilization of toxic As(III) in natural environments. Abiotic oxidation of Mn(II) to MnOX in the presence of Fe minerals has been proved to be an important pathway in the formation of Mn(III, IV) (oxy)hydroxides. However, interactions between Mn(II) and As(III) in the presence of Fe minerals are still poorly understood. In this study, abiotic oxidation of Mn(II) on lepidocrocite, and its effect on the oxidation and mobilization of As(III) were investigated. The results show that MnOX species are detected on lepidocrocite and their contents increase with increasing pH values ranging from 7.5 to 8.4. After 10 days, an MnOx component, groutite (α-MnOOH) was found on lepidocrocite. During the simultaneous oxidation of Mn(II) and As(III), and the As(III) pre-adsorbed processes, the presence and oxidation of Mn(II) significantly promotes the removal of soluble As(III). In addition, MnOx formed on lepidocrocite also contributes to the oxidation of soluble and adsorbed As(III) to As(V), the latter being subsequently released into solution. In the process where Mn(II) is pre-adsorbed on lepidocrocite, less As(III) is removed, given that the active sites occupied by MnOx inhibit the adsorption of As(III). In all experiments, the removal percentages of As(III) and the release of As(V) are correlated positively with pH values and initial concentrations of Mn(II), although they are not apparent in the Mn(II) pre-adsorbed system.  相似文献   

19.
《Geochimica et cosmochimica acta》1999,63(19-20):3049-3057
Oxidation of Co(II)EDTA2− to Co(III)EDTA by manganese and iron hydrous oxide minerals enhances the transport of 60Co in subsurface environments. Until now, reduction of the oxidant MnO2 has not been identified in hydrodynamic systems, leaving the fate and transport mechanisms involving 60Co in natural environments unresolved. We investigated the transport of Co(II)EDTA2− through packed beds of β-MnO2 and identified the reaction mechanism using a novel hydrodynamic flow cell coupled with X-ray absorption near edge structure (XANES) spectroscopy. Using this technique we are able to determine both solution and solid-phase species of cobalt and manganese in real-time. Co(II)EDTA2− is produced while Mn(IV) is reduced to Mn(III) which forms an α-Mn2O3layer on pyrolusite. This layer passivates the surface after an initial reaction period and ultimately limits the production of Co(III)EDTA. As a consequence, the enhanced transport of 60Co by oxidative processes may be diminished by continual exposure to pyrolusite—an advantage from an environmental quality perspective. It has also been clarified that Mn(III) is formed rather than Mn(II) resulting in formation of a stable trivalent manganese solid (α-Mn2O3).  相似文献   

20.
The synthesis and the chemical, structural, magnetic, and Mössbauer spectral characterization of three synthetic alluaudites, Na2Mn2Fe(PO4)3, NaMn Fe2(PO4)3 and Na2MnFeIIFeIII(PO4)3, and a natural sample with the nominal composition of NaMn Fe2(PO4)3, collected in the Buranga pegmatite, Rwanda, are reported. All four compounds have the expected alluaudite monoclinic C2/c structure with the general formula [A(2)A(2)][A(1)A(1)A(1)2]M(1)M(2)2(PO4)3 in which manganese(II) is on the M(1) site and manganese(II), iron(III) and, in some cases, iron(II) on the M(2) site. The X-ray structure of Na2Mn2Fe(PO4)3 also indicates a partially disordered distribution of NaI and MnII on the M(1) and A(1) crystallographic sites. All four compounds are paramagnetic above 40 K and antiferromagnetically ordered below. Above 40 K the effective magnetic moments of NaMnFe2(PO4)3 and Na2MnFeIIFeIII(PO4)3 are those expected of high-spin manganese(II) and iron(III) with the 6A1g electronic ground state and high-spin iron(II) with the 5T2g electronic ground state. In contrast, the effective magnetic moment of Na2Mn2Fe(PO4)3 is lower than expected as a result of enhanced antiferromagnetic exchange coupling by the manganese(II) on the M(2) site. The Mössbauer spectra of all four compounds have been measured from 4.2 to 295 K and have been found to be magnetically ordered below 40 K for Na2Mn2Fe(PO4)3 and 35 K for the remaining compounds. The Mössbauer spectra of Na2Mn2Fe(PO4)3 exhibit the two expected iron(III) quadrupole doublets and/or magnetic sextets expected for a random distribution of manganese(II) and iron(III) ions on the M(2) site. Further, the Mössbauer spectra of Na2MnFeIIFeIII(PO4)3 exhibit the two iron(II) and two iron(III) quadrupole doublets and/or magnetic sextets expected for a random distribution of iron(II) and iron(III) on the M(2) site. Surprisingly, the synthetic and natural samples of NaMnFe2(PO4)3 have 19 and 10% of iron(II) on the M(2) site; apparently the presence of some iron(II) stabilizes the alluaudite structure through the reduction of iron(III)–iron(III) repulsion. The temperature dependence of the iron(II) quadrupole splitting yields a 440 to 600 cm–1 low-symmetry component to the octahedral crystal field splitting at the M(2) site. The iron(II) and iron(III) hyperfine fields observed at 4.2 K are consistent with the presence of antiferromagnetic ordering at low temperatures in all four compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号