首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical small mountainous rivers (SMRs) are increasingly recognized for their role in the global export of dissolved organic carbon (DOC) to the oceans. Here we utilize the Isthmus of Panama as an ideal place to provide first-order estimates of DOC yields across a wide assemblage of bedrock lithologies and land cover practices. Samples for dissolved organic carbon (DOC) analysis were collected across Panama along an E–W transect from the central Panama area to the Costa Rican border for 24 mainstem rivers, 3 large tributary rivers, and one headwater stream. Sampling occurred during both the wet and the dry seasons. DOC concentrations during the wet season are higher than during the dry season in all but three of the rivers. Concentrations vary greatly from river to river and from season to season, with values as low as 0.64 mg l−1 to greater than >25 mg l−1 with the highest concentrations observed for the rivers draining Tertiary marine sedimentary rocks in the Burica and Azuero peninsulas. DOC yields from Panamanian rivers (2.29–7.97 tons/km2/y) are similar to or slightly lower than those determined for other tropical SMR systems. Areas underlain by Tertiary aged sediments exhibited significantly higher mean DOC yields compared to their igneous counterparts, despite maintaining substantially lower aboveground carbon densities, suggesting the important influence of lithology. Finally, regression analyses between DOC yields and select watershed parameters revealed a negative and statistically significant relationship with maximum and mean gradient suggesting lower soil retention times may be linked to lower DOC yields.  相似文献   

2.
Few studies have examined the dynamics of sediments and suspended organic matter and their export from headwater basins in the Andes Mountains to the Amazon River, despite the fact that the Andes are the primary source of sediments to the lower Amazon basin. We measured river discharge as well as the concentration, δ15N, δ13C, %N, and %OC of coarse and fine suspended sediments (CSS and FSS) in the Chorobamba River, located in the central Andean Amazon of Peru. Samples were taken at least weekly over an entire year (July 2004-July 2005), with additional sampling during storms. Concentrations of particulate organic matter (POM) were generally low in the study river, with concentrations increasing by up to several orders of magnitude during episodic rain events. Because both overall flow volumes and POM concentrations increased under stormflow conditions, the export of POM was enhanced multiplicatively during these events. We estimated that a minimum of 80% of annual suspended sediment transfer occurred during only about 10 days of the year, also accounting for 74% of particulate organic carbon and 64% of particulate organic nitrogen transport. Significant differences occurred between seasons (wet and dry) for δ13C of coarse and fine POM in the Chorobamba River, reflecting seasonal changes in organic matter sources. The time series data indicate that this Andean river exports approximately equal amounts of fine and coarse POM to the lower Amazon. The observation that the vast majority of sediments and associated OM exported from Andean rivers is mobilized during short, infrequent storm events and landslides has important implications for our understanding of Amazon geochemistry, especially in the face of incipient global change.  相似文献   

3.
The St. Lawrence River discharges a substantial volume of water (405 km3/a) containing suspended (SPM; 3.42 × 106t) and dissolved (68.0 × 106t) materials to the Gulf of St. Lawrence. The total load contains organic carbon in paniculate (POC; 3–14% of SPM), and dissolved (DOC; 3.76 ± 0.63 mg/l) form. The concentration of POC (and particulate organic nitrogen) is positively correlated with discharge (increased during the spring flood and the fall enhancement of flow), but concentration of DOC is not so simply related to discharge. In consequence, the total organic carbon (POC + DOC) load is relatively invariant, and increased annually by only 2–3% despite a progressive increase of 8% in discharge over the years of this study. Seasonal differences in the composition of the particulate organic matter (POM) are interpreted as reflecting dominant contributions from within-river production in summer and from terrestrial sources in spring and fall. In years when the annual discharge was greater than average, a higher proportion of the POM was terrigenous. The organic matter in surface sediments of the estuary to which the river discharges is predominantly of terrestrial provenance.  相似文献   

4.
Aggregation of particulate organic matter (POM) and mineral grains may result in physical protection of organic matter (OM). To test this, phytoplankton cells of the dinoflagellate Scrippsiella trochoidea were inoculated with a natural bacterial assemblage and incubated with or without the clay montmorillonite. Within 5 h, aggregation of phytoplankton OM and clay resulted in transfer of the majority (∼80%) of OM into the >1.6 g cm−3 density fraction. Degradation of particulate organic carbon (POC), particulate nitrogen (PN), dissolved organic carbon (DOC), and dissolved and particulate total hydrolyzable amino acids (THAA), were modeled with a multi-G approach. Quantity of resistant OM was between two and four times larger during clay incubation relative to clay-free incubation. The two incubations did not exhibit significant differences in degradation state of particulate amino acids nor were there indications of preferential sorption of basic amino acids. The results suggest that a considerable fraction of phytoplankton OM can become resistant, at least on a timescale of weeks, mostly due to aggregation of POM and clay mineral grains.  相似文献   

5.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

6.
Transport of dissolved organic carbon (DOC) in four river systems in different physiographic regions of the United States was related to link magnitude by a power function, log Y = ?0.84 + 1.24 log X. Multiple linear regression indicated that discharge, watershed area, and link magnitude explained almost all variation in DOC transport. For purposes of ecosystem comparison, link magnitude appeared superior to other classification systems, such as stream order.In two of the river systems, the largest fraction of DOC was transported in the spring. A third has a winter transport maximum; the last had bimodal spring and fall maxima.Streams transporting similar total amounts of DOC may vary widely in DOC concentration (mg. 1?1). Particulate organic matter concentration was not simply related to that of DOC.Ranges and means of DOC concentration, mean DOC: POC ratios, annual load of transported DOC as well as annual watershed DOC output were tabulated for 45 streams and rivers, representing a broad range of stream systems and physiographic regions. Mean DOC concentration for these 45 waterways ranged from 0.7 to 28 mg. 1?1. The very low DOC values are found in undisturbed streams; many of the higher values are associated with larger streams influenced by human activities. Most DOC outputs fell within the range 0.21–5.42 metric tons. km?2.yr?1; mean DOC:POC ranged between 0.09 and 70.A comparison was made among several biomes of the ratio of experted DOC to watershed gross and net primary production. DOC, while playing a major role in aquatic ecosystem organic budgets, appears to be of little significance in the nutrient balance of watersheds.  相似文献   

7.
The concentration of chloride (Cl?) in streams in northern regions has increased as a result of applications of deicers. This study focused on quantifying the relationship between land use and stream Cl? concentrations. The study area comprises two adjacent watersheds in central Illinois, with similar geology and climate but different land uses (agricultural and urban). GIS analysis delineated watershed land use and calculated road surface areas. Stream water samples were collected and analyzed for anionic composition. During the winter months, streams dominated with urban land use experienced a 20-fold increase in Cl? concentrations (range between 36 and 1350 mg L?1); Cl? concentrations in agricultural dominated streams also increased, but the increase was smaller (3X) and concentrations remained low (between 11 and 58 mg L?1). As road salts are not the sole source of Cl? in a stream, Cl? and bromide (Br?) mass ratios (Cl/Br) and Cl? and sodium (Na) molar ratios ([Cl]/[Na]) were used to identify potential sources of Cl?. The ratios indicate urbanized watersheds were impacted by road salts; agricultural watersheds ratios indicate other anthropogenic sources. A nonlinear relationship between urban land use and stream Cl? concentrations indicates urban land use as low as 23% results in elevated Cl? concentrations (greater than 150 mg L?1) in stream waters.  相似文献   

8.
The Hauver Branch and Hunting Creek watersheds in Catoctin Mountain, Maryland, USA, are small rural watersheds that receive road salt during the winter. Base cation evidence of road salt application in stream water disappears by approximately September for Hauver Branch, but never disappears for Hunting Creek. The fraction of the precipitation-corrected watershed fluxes of both Mg2+ and Ca2+ attributable to cation exchange associated with road salt Na+ inputs are 14 and 19 % for Hauver Branch and Hunting Creek, respectively. The percentage of divalent cations in stream waters resulting from road salt application is calculated using the watershed chemical weathering Na+/SiO2 molar ratio. Calculation of a representative chemical weathering Na+/SiO2 molar ratio may be problematic with spatially variable bedrock, and/or inputs from water softeners, septic systems, and wastewater treatment plants. Therefore, investigations of small forested rural watersheds offer insights into road salt dynamics that may be lost at larger scales and/or with increased urbanization. The quantities of road salt application to the Hauver Branch and Hunting Creek watersheds are 3.3 and 11 t km?2 year?1, respectively. The per-lane-length-normalized road salt application rates for the Hauver Branch and Hunting Creek watersheds are 10 and 22 t lane?1 km?1 year?1, respectively. These per-lane-length-normalized road salt application rates are relatively large compared to more urbanized watersheds located north of the study site where the application rates are reported by municipalities. These findings may indicate that road and highway administrations may underestimate their rates of road salt application.  相似文献   

9.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

10.
11.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

12.
Water and suspended sediment samples were collected along a longitudinal transect of the Bhagirathi – a headwater stream of the river Ganga, during the premonsoon and postmonsoon seasons, in order to assess the solute acquisition processes and sediment transfer in a high elevation river basin. Study results show that surface waters were dominated by HCO3 and SO4 in anionic abundance and Ca in cationic concentrations. A high concentration of sulphate in the source region indicates oxidative weathering of sulphide bearing minerals in the drainage basin. The combination of high concentrations of calcium, bicarbonate and sulphate in river water suggests that coupled reaction involving sulphide oxidation and carbonate dissolution are mainly controlling the solute acquisition processes in the drainage basin. The sediment transfer reveals that glacial weathering and erosion is the major influence on sediment production and transfer. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The sediment mineralogy and water mineral equilibrium indicate that water composition is in equilibrium with kaolinite. The river Bhagirathi annually delivers 0.74 M.tons of dissolved and 7.88 M.tons of suspended load to the river Ganga at Devprayag. The chemical and physical denudation rate of the Bhagirathi is 95 and 1010 tons/km2/yr, higher than the Indian and global average.  相似文献   

13.

Using adsorption of organic matter (OM) on diethylaminoethyl cellulose (DEAE-cellulose) in the dynamic mode, OM is divided into autochthonous and allochthonous. Based on the experiments on BOD kinetics and OM division into components, the kinetic parameters of autochthonous and allochthonous OM transformation are established for the first time (kaut = 0.013, kall = 0.0013 day–1 at t =20°C). The activation parameters of transformation for autochthonous OM (ΔH# = 75.6 kJ/mol, ΔS# =–116.5 J/(mol K), and ΔG# = 108.3 J/mol) and allochthonous OM (ΔH# = 66.1 kJ/mol, ΔS# =–149.1 J/(mol K), and ΔG# = 108.0 J/mol) are calculated by the Arrhenius equation.

  相似文献   

14.
Small rivers draining mountain islands are important in the transfer of terrestrial particulate organic carbon (POC) to the oceans. This input has implications for the geochemical stratigraphic record. We have investigated the stable isotopic composition of POC (δ13Corg) in rivers draining the mountains of Taiwan. In 15 rivers, the suspended load has a mean δ13Corg that ranges from −28.1±0.8 to −22.0±0.2 (on average 37 samples per river) over the interval of our study. To investigate this variability we have supplemented suspended load data with measurements of POC in bedrock and river bed materials, and constraints on the composition of the terrestrial biomass. Fossil POC in bedrock has a range in δ13Corg from −25.4±1.5 to −19.7±2.3 between the major geological formations. Using coupled δ13Corg and N/C we have found evidence in the suspended load for mixing of fossil POC with non-fossil POC from the biosphere. In two rivers outside the Taiwan Central Range anthropogenic land use appears to influence δ13Corg, resulting in more variable and lower values than elsewhere. In all other catchments, we have found that 5 variability in δ13Corg is not controlled by the variable composition of the biomass, but instead by heterogeneous fossil POC.In order to quantify the fraction of suspended load POC derived from non-fossil sources (Fnf) as well as the isotopic composition of fossil POC (δ13Cfossil) carried by rivers, we adapt an end-member mixing model. River suspended sediments and bed sediments indicate that mixing of fossil POC results in a negative trend between N/C and δ13Corg that is distinct from the addition of non-fossil POC, collapsing multiple fossil POC end-members onto a single mixing trend. As an independent test of the model, Fnf reproduces the fraction modern (Fmod) in our samples, determined from 14C measurements, to within 0.09 at the 95% confidence level. Over the sampling period, the mean Fnf of suspended load POC was low (0.29 ± 0.02, n = 459), in agreement with observations from other mountain rivers where physical erosion rates are high and fossil POC enters river channels. The mean δ13Cfossil in suspended POC varied between −25.2±0.5 and −20.2±0.6 from catchment to catchment. This variability is primarily controlled by the distribution of the major geological formations. It also covers entirely the range of δ13Corg found in marine sediments which is commonly thought to derive from mixing between marine and terrigenous POC. If land-sourced POC is preserved in marine sediments, then changes in the bulk δ13Corg observed offshore Taiwan could instead be explained by changes in the onshore provenance of sediment. The range in δ13Corg of fossil organic matter in sedimentary rocks exposed at the surface is large and given the importance of these rocks as a source of clastic sediment to the oceans, care should be taken in accounting for fossil POC in marine deposits supplied by active mountain belts.  相似文献   

15.
The Cretaceous sections of the eastern Caucasus contain rich in organic matter (OM) sediments corresponding to the late Cenomanian Oceanic Anoxic Event 2. They are marked by positive δ13C and negative δ18O isotopic anomalies, which are characteristic for this level in many areas of the world. The sediments exhibit distinct cyclic patterns reflected in an alternation of black OM-rich and gray more calcareous layers. The rocks are enriched with many chemical elements, although concentrations of some of them (Mo, Se) are lower than in typical sediments of anoxic basins. It is inferred that anoxic environments in the paleobasin were unstable and locally developed. Nannofossil assemblages from OAE 2 sediments are dominated by the highly resistant eurytropic taxon Watznaueria accompanied by common cool-water Eprolithus and rare warm-water Rhagodiscus representatives, which implies the development of environments unfavorable for the normal marine nannoflora and short-term cooling in the basin during OAE 2. The OM-rich sediments were deposited against the background of the rapid eustatic transgression due to a significant increase in productivity of phytoplankton in the paleobasin. The OAE 2 duration is estimated to be approximately 400 ka.  相似文献   

16.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

17.
The Triassic–Jurassic boundary is characterized by strong perturbations of the global carbon cycle, triggered by massive volcanic eruptions related to the onset of the Central Atlantic Magmatic Province. These perturbations are recorded by negative carbon isotope excursions (CIEs) which have been reported worldwide. In this study, Triassic–Jurassic boundary sections from the southern margin of the Central European Basin (CEB) located in northern Switzerland are analyzed for organic carbon and nitrogen isotopes in combination with particulate organic matter (POM) analyses. We reconstruct the evolution of the depositional environment from Late Triassic to Early Jurassic in northern Switzerland and show that observed negative shifts in δ13C of the total organic carbon (δ13CTOC) in the sediment are only subordinately influenced by varying organic matter (OM) composition and primarily reflect global changes in the carbon cycle. Based on palynology and the stratigraphic positions of isotopic shifts, the δ13CTOC record of the studied sections is correlated with the GSSP section at Kuhjoch (Tethyan realm) in Austria and with the St. Audrie’s Bay section (CEB realm) in southwest England. We also show that in contrast to POM analyses the applicability of organic carbon/total nitrogen (OC/TN) atomic ratios and stable isotopes of total nitrogen (δ15NTN) for detecting changes in source of OM is limited in marginal depositional environments with frequent changes in lithology and OM contents.  相似文献   

18.
Dissolved and particulate organic matter (DOM and POM) distribution, lignin phenol signatures, bulk elemental compositions, fluorescence indices and microbial plankton (algae, bacteria, viruses) in a temperate river floodplain system were monitored from January to November 2003. We aimed to elucidate the sources and compositions of allochthonous and autochthonous organic matter (OM) in the main channel and a representative backwater in relation to the hydrological regime. Additionally, bacterial secondary production was measured to evaluate the impact of organic carbon source on heterotrophic prokaryotic productivity. OM properties in the backwater tended to diverge from those in the main channel during phases without surface water connectivity; this was likely enhanced due to the exceptionally low river discharge in 2003. The terrestrial OM in this river floodplain system was largely derived from angiosperm leaves and grasses, as indicated by the lignin phenol composition. The lignin signatures exhibited significant seasonal changes, comparable to the seasonality of plankton-derived material. Microbially-derived material contributed significantly to POM and DOM, especially during periods of low discharge. High rates of bacterial secondary production (up to 135 μg C L(-1) d(-1)) followed algal blooms and suggested that autochthonous OM significantly supported heterotrophic microbial productivity.  相似文献   

19.
The accuracy of Arctic lake chronologies has been assessed by measuring the14C activities of modern carbon sources and applying these isotopic mass balances to dating fossil lake materials. Small (<1 km2) shallow (<25 m) Arctic lakes with watersheds <12 km2have soil and peat stratigraphic sections with14C activities ranging from 98 to 51% Modern. The14C activity of particulate organic carbon, dissolved organic carbon, and dissolved inorganic carbon from lake and stream waters ranges from 121 to 95% Modern. The sediment–water interface of the studied lakes shows consistent14C ages of ∼100014C yr, although the14C activity of living aquatic vegetation is 115% Modern. Radiocarbon measurements of components of the lacustrine carbon pool imply that the ∼100014C yr age of the sediment–water interface results from deposition of14C-depleted organic matter derived from the watershed.  相似文献   

20.
The relative contributions of dolomite to calcite weathering related to riverine fluxes are investigated on a highly resolved spatial scale in the diverse watersheds of Slovenia, which previous work has shown have some of the highest carbonate-weathering intensities in the world and suggests that dolomite weathering is favored over limestone weathering in mixed carbonate watersheds. The forested Sava and So?a River watersheds of Slovenia with their headwaters in the Julian Alps drain alpine regions with thin soils (<30 cm) and dinaric karst regions with thicker soils (0 to greater than 70 cm) all developed over bedded Mesozoic carbonates (limestone and dolomite), and siliclastic sediments is the ideal location for examining temperate zone carbonate weathering. This study extends previous work, presenting geochemical data on source springs and documenting downstream geochemical fluctuations within tributaries of the Sava and So?a Rivers. More refined sampling strategies of springs and discrete drainages permit directly linking the stream Mg2+/Ca2+ ratios to the local bedrock lithology and the HCO3 ? concentrations to the relative soil depths of the tributary drainages. Due to differences in carbonate source lithologies of springs and tributary streams, calcite and dolomite weathering end members can be identified. The Mg2+/Ca2+ ratio of the main channel of the Sava River indicates that the HCO3 ? concentration can be attributed to nearly equal proportions by mass of dolomite relative to calcite mineral weathering (e.g., Mg2+/Ca2+ mole ratio of 0.33). The HCO3 ? concentration and pCO2 values increase as soil thickness and alluvium increase for discrete spring samples, which are near equilibrium with respect to calcite. Typically, this results in approximately 1.5 meq/l increase in HCO3 ? from the alpine to the dinaric karst regions. Streams in general do not change in HCO3 ?, Mg2+/Ca2+, or Mg2+/HCO3 ? concentrations down course, but warming and degassing of CO2 produce high degrees of supersaturation with respect to calcite. Carbonate-weathering intensity (mmol/km2-s) is highest within the alpine regions where stream discharge values range widely to extreme values during spring snowmelt. Overall, the elemental fluxes of HCO3 ?, Ca2+, and Mg2+ from the tributary watersheds are proportional to the total water flux because carbonates dissolve rapidly to near equilibrium. Importantly, dolomite weathers preferentially over calcite except for pure limestone catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号