首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present examples of X-ray jets, observed by the Soft X-ray Telescope on board Yohkoh, which followed trajectories of transequatorial interconnecting loops (TILs). All these TILs were preexisting, seen some time before, but were mostly invisible at the time of the onset of the jet which often made them bright along their total length. With few exceptions, these TIL-associated jets have properties very similar to other jets ejected inside active regions or along open field lines (footpoints in X-ray bright points, recurrence, strong collimation, average speed close to 350 km s−1), but may reach larger lengths, in our examples up to 450 000 km. Exceptions are one jet that moved slower and one that had no brightened area at its supposed source region at the time of its origin (an X-ray bright point appeared there only 3 hours later). It appears that quite a high number of X-ray jets may be of this TIL-associated kind. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014963812437  相似文献   

2.
3.
We obtain a class of transformations between Brans–Dicke (BD) scalar field conformal factor of the metric and the Klein–Gordon (KG) wave (its amplitude and phase), such that the BD action described by conformaly flat (CF) metrics is reduced to the KG action. We then present a modified theory as a causal Bohmian quantum gravity by using the quantum potential back reaction effects on the Minkowski background spacetime. We also derive Hamilton–Jacobi equations of the modified theory which is useful for obtaining its de Broglie pilot wave.  相似文献   

4.
During 2??C?18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer.  相似文献   

5.
We discuss footpoints of loops seen by Yohkoh in soft X-rays that connect active regions across the equator (transequatorial interconnecting loops – TILs). While most TILs are rooted in moderately strong fields at peripheries of active regions, there are also cases when these loops are anchored in very weak or very strong fields, ranging from < 30 G to several hundred gauss. Some have their footpoints near sunspot penumbrae, creating `X-ray fountains' in a combination with active region loops. But TILs are never rooted in sunspots. The most likely explanation is that magnetic field lines leave spots almost vertically so that TILs rooted in them extend high into the corona and density in them is below the limit of visibility in X-rays. The fact that in force-free modeling some TILs are rooted in sunspots is most probably due to the difference between field-line connections in `vacuum' and in the highly conductive plasma on the Sun. Some TILs end before they reach active regions which sometimes may indicate the real situation, but mostly this `gap' is probably due to a temperature decrease near the loop footpoints which makes them invisible in X-rays. In that case the fact that these cool lowest parts of TILs are never found in TRACE or SOHO EIT images indicates that plasma density in TILs must be very low. Still, the total absence of any counterparts of X-ray TILs in TRACE and EIT images is puzzling and, therefore, other possible interpretations of the `gap' origin are also briefly mentioned.  相似文献   

6.
It is not clear how trans-equatorial loop systems (TLSs) are formed, although they have been observed often with Yohkoh/SXT. We focus here on a TLS that appeared on 27 May 1998. Yokoyama and Masuda (Solar Phys. 254, 285, 2009) proposed a new scenario for the formation mechanism of the TLS. In this scenario, they pointed out the importance of magnetic interaction between an active region and a coronal hole to make “strong-seed magnetic fields” before a transient (bright and short-lived) trans-equatorial loop was created. The main aims of this study are to verify the scenario and to make the TLS formation mechanism clear, based on observational data. Yohkoh/SXT images, SOHO/MDI magnetograph data, and Kitt Peak coronal-hole maps were mainly used for our analyses. We investigated the TLS in detail from the time that there were no signatures of the TLS to its clear appearance. The following results are obtained: i) an active region emerged in the vicinity of a coronal-hole boundary, ii) the coronal-hole boundary retreated during the period when the active region was developing, iii) temporal variations of soft X-ray intensities were roughly synchronized between the coronal-hole boundary and a trans-equatorial region, and iv) new closed loops were observed in soft X-rays clearly at the coronal-hole boundary. Since i), ii), iii), and iv) are just what we expect in the scenario of YM2009, the scenario found support. We conclude that the TLS was originating with large-scale magnetic fields of the coronal-hole boundary through magnetic reconnection between the active region and a coronal hole.  相似文献   

7.
Klimchuk  J.A. 《Solar physics》2000,193(1-2):53-75
Careful examination of 43 soft X-ray loops observed by Yohkoh has revealed a number of interesting properties of the loop cross section. First, the loops tend to be only slightly ( 30%) wider at their midpoints than at their footpoints, implying less-than-expected expansion of the magnetic field. Second, the variation of width along each loop tends to be modest, implying that the cross section has an approximately circular shape. And third, cross-axis intensity profiles tend to be singly-peaked and simple, implying that the cross section is approximately uniformly filled on resolvable scales. We conclude that the energy which heats the plasma is either dissipated axially symmetrically on a scale equal to a loop diameter ( 11000 km) or else is dissipated with any spatial structure, but on a scale much smaller than a loop diameter, and then transported laterally in an axisymmetric fashion (perhaps via conduction along chaotic field lines). In their present form, none of the theoretical ideas concerning the magnetic structure and heating of loops are obviously capable of explaining all of the observed properties.  相似文献   

8.
Zhugzhda  Y. D.  Nakariakov  V. M. 《Solar physics》1997,176(1):107-121
This paper is aimed at establishing the relationship between the large-scale magnetic fields (LSMF), coronal holes (CH), and active regions (AR) in the Sun. The LSMF structure was analyzed by calculating the vector photospheric magnetic field under a potential approximation. Synoptic maps were drawn to study the distribution of the B field component and to isolate regions where the open field lines of the unipolar magnetic field are most radial. These are the sites of occurrence of X-ray and Hei 10830 Å coronal holes detected from the SXT/Yohkoh images. It is shown that coronal holes are usually located in LSMF regions with a typical pattern of divergentB vectors and a so-called saddle configuration.B vectors from the conjugate (spaced by 90°) coronal holes converge towards the active regions between CH. Variations in AR distort coronal holes and change their boundaries. This implies that the energy regime in CH depends on the energy supply from the active region. The LSMF structure is more stable than coronal holes, remaining practically unchanged during tens of rotations of the Sun. Thus, a peculiar magnetically coupled system of LSMF/CH/AR has been revealed. A model has been suggested to describe the interaction of the emerging toroids in the convection zone and in the photosphere. The cellular convection, that develops at the center of the toroids, is responsible for the occurrence of active regions. The model qualitatively describes the observed particularities of the LSMF/CH/AR system.  相似文献   

9.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

10.
The Geometric Spreading of Coronal Plumes and Coronal Holes   总被引:1,自引:0,他引:1  
Suess  S. T.  Poletto  G.  Wang  A.-H.  Wu  S. T.  Cuseri  I. 《Solar physics》1998,180(1-2):231-246
The geometric spreading in plumes and in the interplume region in coronal holes is calculated, using analytic and numerical theoretical models, between 1.0 and 5.0 R. We apply a two-scale approximation that permits the rapid local spreading at the base of plumes (fl) to be evaluated separately from the global spreading (fg) imposed by coronal hole geometry. We show that fl can be computed from a potential-field model and fg can be computed from global magnetohydrodynamic simulations of coronal structure. The approximations are valid when the plasma beta is small with respect to unity and for a plume separation small with respect to a solar radius.  相似文献   

11.
Within the framework of ideal magnetohydrodynamics the excitation of the ballooning instability in a toroidal coronal loop with a radius of cross section a and a radius of curvature R is analyzed by using the energy method. Kink oscillations are able to excite the ballooning instability when the plasma beta parameter β>2a/R. It has been suggested that this can result in the formation of cusp-shaped coronal loops. Modulation of gyrosynchrotron emission caused by kink oscillations is considered. The intensity of gyrosynchrotron emission for optically thin sources is the most sensitive to Alfvén disturbances. The obtained theoretical results are discussed in the light of Yohkoh, SOHO, TRACE, RHESSI, and Nobeyama observations.  相似文献   

12.
We continue studying the robustness of coronal seismology. We concentrate on two seismological applications: the estimate of coronal scale height using the ratio of periods of the fundamental harmonic and first overtone of kink oscillations, and the estimate of magnetic-field magnitude using the fundamental harmonic. Our analysis is based on the model of non-planar coronal loops suggested by Ruderman and Scott (Astron. Astrophys. 529, A33, 2011), which was formulated using the linearized MHD equations. We show that the loop non-planarity does not affect the ratio of periods of the fundamental harmonic and first overtone, and thus it is unimportant for the estimates of the coronal scale height. We also show that the density variation along the loop and the loop non-planarity only weakly affect the estimates of the magnetic-field magnitude. Hence, using the simplest model of coronal loops, which is a straight homogeneous magnetic cylinder, provides sufficiently accurate estimates for the magnetic-field magnitude.  相似文献   

13.
Fifty interconnecting loops (ILs) that are induced by new-born active regions are investigated. The formation period of four ILs including two same-hemisphere interconnecting loops (HILs) and two transequatorial loops (TLs) are analyzed. The magnetic flux related with these loops is studied. Considering the active region pairs related with the IL as a magnetic system, the total magnetic flux has a tendency of increasing for this system, the signs of net magnetic flux tend to be opposite for the active region pairs. There is no difference between HILs and TLs in this aspect.  相似文献   

14.
The study of the expansion of the solar wind out of a system of coronal holes is continued. To this end, we consider the numerical integration of partial differential equations for problems with icosahedral symmetry, in general. First, employing Weyl theory, orbifold coordinates are introduced. Second, the icosahedral coordinates are discussed in detail. Third, following an analysis of the properties of these coordinates and the derivation of a few expressions useful for grid construction, various alternatives for the distribution of lattice points required for numerical integration are considered. A comparison of these numerical grids motivates the choice of a specific grid optimized for the numerical integration carried out in the accompanying paper by Kalish et al.(2002). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Zhang  J.  Gopalswamy  N.  Kundu  M. R.  Schmahl  E. J.  Lemen  J. R. 《Solar physics》1998,180(1-2):285-298
We present the measurement of magnetic field gradient in magnetic loops in the solar corona, based on the multi-wavelength Very Large Array observations of two transient microwave brightenings (TMBs) in the solar active region 7135. The events were observed at 2 cm (spatial resolution 2=) and 3.6 cm (spatial resolution 3=) with a temporal resolution of 3.3 s in a time-sharing mode. Soft X-ray data (spatial resolution 2.5=) were available from the Soft X-ray Telescope on board the Yohkoh satellite. The three-dimensional structure of simple magnetic loops, where the transient brightenings occurred, were traced out by these observations. The 2-cm and 3.6-cm sources were very compact, located near the footpoint of the magnetic loops seen in the X-ray images. For the two events reported in this paper, the projected angular separation between the centroids of 2 and 3.6-cm sources is about 2.3= and 3.1=, respectively. We interpret that the 2 and 3.6-cm sources come from thermal gyro-resonance emission. The 2-cm emission is at the 3rd harmonic originating from the gyro-resonance layer where the magnetic field is 1800 G. The 3.6-cm emission is at the 2nd harmonic, originating from the gyro-resonance layer with a magnetic field of 1500 G. The estimated magnetic field gradient near the footpoint of the magnetic loop is about 0.09 G km=1 and 0.12 G km=1 for the two events. These values are smaller than those observed in the photosphere and chromosphere by at least a factor of 2.  相似文献   

17.
18.
The Solar TErrestrial RElations Observatory (STEREO) requires powerful tools for the three-dimensional (3D) reconstruction of the solar corona. Here we test such a program with data from SOHO and TRACE. By taking advantage of solar rotation, a newly developed stereoscopy tool for the reconstruction of coronal loops is applied to the solar active region NOAA 8891 observed from 1 March to 2 March 2000. The stereoscopic reconstruction is composed of three steps. First, we identify loop structures in two TRACE images observed from two vantage viewpoints approximately 17 degrees apart, which corresponds to observations made about 30 hours apart. In the second step, we extrapolate the magnetic field in the corona with the linear force-free field model from the photospheric line-of-sight SOHO/MDI data. Finally, combining the extrapolated field lines and one-dimensional loop curves from two different viewpoints, we obtain the 3D loop structures with the magnetic stereoscopy tool. We demonstrate that by including the magnetic modeling this tool is more powerful than pure geometrical stereoscopy, especially in resolving the ambiguities generated by classical stereoscopy. This work will be applied to the STEREO mission in the near future.  相似文献   

19.
We present a procedure to extract bright loop features from solar EUV images. In terms of image intensities, these features are elongated ridge-like intensity maxima. To discriminate the maxima, we need information about the spatial derivatives of the image intensity. Commonly, the derivative estimates are strongly affected by image noise. We therefore use a regularized estimation of the derivative, which is then used to interpolate a discrete vector field of ridge points; these “ridgels” are positioned on the ridge center and have the intrinsic orientation of the local ridge direction. A scheme is proposed to connect ridgels to smooth, spline-represented curves that fit the observed loops. Finally, a half-automated user interface allows one to merge or split curves or eliminate or select loop fits obtained from this procedure. In this paper we apply our tool to one of the first EUV images observed by the SECCHI instrument onboard the recently launched STEREO spacecraft. We compare the extracted loops with projected field lines computed from near-simultaneous magnetograms measured by the SOHO/MDI Doppler imager. The field lines were calculated by using a linear force-free field model. This comparison allows one to verify faint and spurious loop connections produced by our segmentation tool and it also helps to prove the quality of the magnetic-field model where well-identified loop structures comply with field-line projections. We also discuss further potential applications of our tool such as loop oscillations and stereoscopy.  相似文献   

20.
We studied nonlinear kink oscillations of a thin magnetic tube using the cold-plasma approximation. We assumed that the plasma density varies along the tube but does not vary in the radial direction. Using the regular perturbation method, we show that the nonlinearity does not affect the oscillation amplitude. We also calculated the nonlinear correction to the oscillation frequency, which is proportional to the oscillation amplitude squared. As an example, we considered nonlinear oscillations of a coronal magnetic loop of half-circle shape in an isothermal atmosphere with equal plasma temperatures inside and outside the loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号