首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTIONA violent molecular outflow is a bajsic component of star formation process. Such outflowsare observed over a wide range of wavelength from the ultraviolet to the radio, resulting fromthe interaction of highly supersonic stellar winds with the alnbiellt material and the windejection takes place in the vicinity of a newly formed star. Outflows are produced by starsof all massess but currellt outflow theories are predominantly based on observations of nearby,low-mass outflow sy…  相似文献   

2.
With the objective of studying the relationships between high-velocity gas and water maser emission the results of a search from 95 IRAS sources for high-velocity gas associated with star forming molecular clouds are reported. 21 sources have been identified as molecular outflow candidates.  相似文献   

3.
在红外天文卫星点源表中选取了具有陡远红外谱的97个源及其它8个红外源,用射电天文联合实验室紫金山天文台青海站的137m望远镜,进行了CO(J=1-0)的观测.结果在102个源中测到了CO辐射,有9个源参考位置难以确定,21个源有多重成分,在其余72个源中有29个具有高速气体,其中18个是新测到的双极外向流候选者,对其性质及与年轻星体的关系作了简要讨论.  相似文献   

4.
Energetic mass outflows have been detected in molecular line observations towards young stellar objects. In this review we take the Orion-KL as an example to discuss the overall structure of a high-velocity outflow and its environment. The kinematics of the high-velocity molecular emission show clear evidence of a bipolar jet which originates in the vicinity of IRc2, a massive protostar. Towards the ends of the jet, 0.05 pc away from the origin of the flow, the interaction between the high-velocity flow and the ambient molecular gas excites shocks. The protostar is encircled by a disc of dense molecular gas, the inner 0.04 pc of which is expanding while the outer part shows signs of rotation and contraction. A comparison between the dynamical timescales of the disk and the bipolar jet may suggest that the disk itself, or some mechanism of disk formation, is also responsible for the bipolar nature of the high-velocity flow.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.NRO, a branch of the Tokyo Astronomical observatory, is a cosmic-radio observing facility open to outside users.  相似文献   

5.
It has been pointed out in the past that it is impossible to accelerate molecular material to velocities ≥ 25 km s−1 with gasdynamic shocks without dissociating the gas. Because of this, it has been argued that observations of molecular emission with radial velocities ∼ 20–100 km s−1 imply the presence of 'C-shocks' (which have much lower post-shock temperatures, and therefore do not dissociate the gas) and the existence of strong (∼ 10–100 μG) magnetic fields.   In this paper, we discuss an alternative mechanism for accelerating molecular material to high velocities: a high-velocity, low-density wind drives a non-dissociative shock (with shock velocity v cs ≤ 25 km s−1) into a high-density, molecular clump. Once this shock wave has gone through the clump, the molecular material is moving at a velocity ∼  v cs and has a gas pressure approximately equal to the ram pressure of the impinging wind. The compressed molecular clump can now be accelerated directly by the ram pressure of the wind (without the passage of further shocks through the molecular material), and will eventually move at the wind velocity.   This mechanism has been previously invoked to explain high-velocity molecular emission. However, numerical simulations have shown that a wind/clump interaction leads to the fragmentation of the clump before it can be accelerated to large velocities. In our numerical simulation (which includes an approximate treatment of the relevant microphysics) we find that the fragments that are produced are still largely molecular, and that they are rapidly accelerated to velocities comparable to the wind velocity. We therefore conclude that a wind/molecular clump interaction is indeed a valid mechanism for producing high-velocity molecular features.  相似文献   

6.
We have obtained a spectrum of the Na D lines of the Seyfert galaxy Mrk 595 with a signal-to-noise ratio (S/N) of about 30. The importance of this sightline is that this galaxy lies in a direction close to the highest column densities of the Cohen high-velocity (HV) stream, and hence represents the best opportunity of detecting this stream in interstellar absorption, as previous searches towards stellar targets up to a distance of 600 pc have not been successful. The H  I column density in the direction of this galaxy implies that the HV gas should be detectable in absorption in the Na D lines. No such detections are made (at the 3σ level) and we consider possible explanations. Hence previous non-detections towards stars do not necessarily mean that the HV gas is more distant than the stars, and we emphasize that the distance of this high-velocity cloud (HVC), which is a key parameter to the understanding of the nature and origin of this feature, remains unknown and indeed may be difficult to establish.  相似文献   

7.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

8.
We review the contribution of integral field spectroscopy (IFS) to pre-main-sequence star studies. These studies are mostly synoptic in nature reflecting the use of this technique in addressing difficult and complex objects. Physical diagnostics were derived from IFS data such as (atomic, molecular) gas excitation and pre-shock densities, gas morphology and spectra from close binaries. Models for the sources are directly tested: shock models (planar, bow-shock) and magneto-hydrodynamics jet models.Future contributions to the field are addressed. Surveys of mass loss across age and mass spectrum and in the nearby Orion Nebula cluster emerge as the most scientifically promising.  相似文献   

9.
High resolution interferometric COJ=1–0 observations of the outflows from two young embedded sources, TMC1 and TMC1A, show the high-velocity gas to have a conical structure, with a constant opening angle of 45° extending to within 1000 AU of the central stars. The correspondence of near-infrared reflection nebulosity atK band with blueshifted CO emission in both objects suggests the lobes are partially evacuated, as do position-velocity diagrams from single-dish COJ=2–1 data. We suggest that the outflows are driven by jets which impart momentum to the ambient medium through shocks, rather than through the entrainment of molecular material along the edges of the jet.The NRAO is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation  相似文献   

10.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

11.
孙科峰  吴月芳 《天文学报》2002,43(4):353-358
^12CoJ=1-0成图观测表明在IRAS19282 1814附近存在着一个蓝向单极高速分子外流,计算了其基本参量并进行了分析,它的成协红外源IRAS19282 1814可能是大质量年轻星体,其IRAS波段色指数表明该源深埋于气体和尘埃物质之中,由60-100μm流量密度获得尘埃温度为30K,它的附近没有其他的源,所以IRAS19282 1814可能是外向流的驱动源。  相似文献   

12.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

13.
1 INTRODUCTIONHerbig-Haro objects are a kind of semi-sta]c, semi-nebuIa objects associated with star fOrm-ing regions. Although such objects were noticed by Burnham as early as l890s, they did notattract much attention until the late 1940s until their independent rediscovery by Herbig andHaro in NGC 1999. A few years later, these objects were named Herbig-Haro objects fOr thefirst time by Ambartsumian (Reipurth 1997). In the fOllowing half century, the observationand theoretical res…  相似文献   

14.
Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here a situation in which a molecular cloud is located in the proximity of a supernova remnant which is efficiently accelerating cosmic rays and gradually releasing them in the interstellar medium. We calculate the multiwavelength spectrum from radio to gamma rays which is emerging from the cloud as the result of cosmic ray interactions. The total energy output is dominated by the gamma-ray emission, which can exceed the emission in other bands by an order of magnitude or more. This suggests that some of the unidentified TeV sources detected so far, with no obvious or very weak counterparts in other wavelengths, might be in fact associated with clouds illuminated by cosmic rays coming from a nearby source. Moreover, under certain conditions, the gamma-ray spectrum exhibits a concave shape, being steep at low energies and hard at high energies. This fact might have important implications for the studies of the spectral compatibility of GeV and TeV gamma-ray sources.  相似文献   

15.
The globule CB 34, which harbours a cluster of class 0 young stellar object (YSO) protostars, has been investigated through a multiline SO and SiO survey at millimetre wavelengths. The SO data reveal that the globule consists of three quiescent high-density (∼105 cm−3) clumps, labelled A, B and C, with sizes of ∼  0.2–0.3 pc  . The SiO data provide evidence for high-velocity gas across the globule. Most likely, the high-velocity gas is distributed in three distinct high-velocity outflows associated with the YSOs in each of the three clumps. High-velocity SO features have been detected only towards the two brightest SiO outflows. These broad SO components exhibit spatial and spectral distributions which are consistent with those of the SiO emission, so they can also be used as tracers of the outflows.
The comparison between the spatial and spectral properties of the SO and SiO emissions in the three clumps suggests different evolutionary stages for the embedded YSOs. In particular, the YSO associated with clump C exhibits some peculiarities, namely smaller SiO linewidths, lower SiO column densities, a lack of extended SiO structure and of SO wings, and the presence of a SO spatial distribution which is displaced with respect to the location of the YSO. This behaviour is well explained if the SiO and SO molecules which were produced at high velocities in the shocked region have been destroyed or slowed down because of the interaction with the ambient medium, and the chemistry is dominated again by low-temperature reactions. Thus our observations strongly suggest that the YSO in clump C is in a more evolved phase than the other members of the cluster.  相似文献   

16.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

17.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

18.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

19.
《New Astronomy Reviews》2002,46(2-7):283-285
We present multi-frequency observations towards GHz-Peaked Spectrum (GPS) sources with the VLBA. Recent VSOP observations of a GPS source OQ208 have shown that its convex spectrum is caused by free–free absorption (FFA) due to external ionized gas surrounding the source. The keys are: (1) sharp cut-off at low frequency in the spectrum, and (2) asymmetric peak frequency in double lobe. In order to investigate the nature of FFA in GPS sources, we observed nine objects (five QSOs, two RGs, two Sy2s) selected from GPS catalog. We tried spectral fitting using FFA model for each source. All QSOs show asymmetric FFA opacities like OQ208 does, while the opacity of RGs and Sy2s are symmetric. This supports the unification model between RGs and QSOs.  相似文献   

20.
We report subarcsec-resolution X-ray imaging of the core of the Perseus cluster around the galaxy NGC 1275 with the Chandra X-ray Observatory . The ROSAT -discovered holes associated with the radio lobes have X-ray bright rims which are cooler than the surrounding gas and not a result of shocks. The holes themselves may contain some hotter gas. We map strong photoelectric absorption across the northern lobe and rim owing to a small infalling irregular galaxy, known as the high-velocity system. Two outer holes, one of which was previously known, are identified with recently found spurs of low-frequency radio emission. The spiral appearance of the X-ray cooler gas and the outer optical parts of NGC 1275 may be due to angular momentum in the cooling flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号