共查询到20条相似文献,搜索用时 10 毫秒
1.
Propagation and influence on tropical precipitation of intraseasonal variation over mid-latitude East Asia in boreal winter 下载免费PDF全文
本文研究冬季东亚中纬度地区9–29天季节内变化的传播特征和其对热带降水的影响。分析发现风场的季节内信号既可以向东传播,也可以向南传播。向东传播时,风场的季节内信号主要限于中纬度地区,表现为气旋和反气旋的向东移动。向南传播时,源于中纬度的经向风扰动可以深入到低纬度地区,甚至到达赤道附近。伴随的辐合辐散引起赤道附近地区降水异常,形成南海南部和中国东部-日本之间一个南北向偶极型降水异常。一个异常经向翻转环流在连接热带和中纬度季节内风场和降水变化中起着重要作用。 相似文献
2.
3.
Revisiting the intraseasonal,interannual and interdecadal variability of tropical cyclones in the western North Pacific 下载免费PDF全文
This paper reviews the recent progress and research on the variability of tropical cyclones(TCs) at different time scales. Specific focus is placed on how different types of external forcings or climatic oscillations contribute to TC variability in the western North Pacific(WNP). At the intraseasonal scale, recent advances on the distinctive impacts of the Madden–Julian Oscillation(MJO), the Quasi-biweekly Oscillation, and the asymmetric MJO modulation under different El Ni?o–Southern Oscillation(ENSO) states, as well as the influences of the Pacific–Japan teleconnection, are highlighted. Interannually, recent progress on the influences of the ENSO cycle, different flavors of ENSO, and impacts of Indian Ocean warming is presented. In addition, the uncertainty concerning interdecadal TC variations is discussed, along with the recently proposed modulation mechanisms related to the zonal sea surface temperature gradient, the North Pacific Gyre Oscillation, and the Pacific Decadal Oscillation(PDO). It is hoped that this study can deepen our understanding and provide information that the scientific community can use to improve the seasonal forecasting of TCs in the WNP. 相似文献
4.
Xianan Jiang Duane E. Waliser Jui-Lin Li Christopher Woods 《Climate Dynamics》2011,36(11-12):2219-2232
The boreal summer intraseasonal variability (BSISV), which is characterized by pronounced meridional propagation from the equatorial zone to the Indian Continent, exerts significant modulation of the active/break phases of the south Asian monsoon. This form of variability provides a primary source of subseasonal predictive skill of the Asian summer monsoon. Unfortunately, current general circulation models display large deficiencies in representing this variability. The new cloud observations made available by the CloudSat mission provide an unprecedented opportunity to advance our characterization of the BSISV. In this study, the vertical structures of cloud water content and cloud types associated with the BSISV over the Indian Ocean and subcontinent are analyzed based on CloudSat observations from 2006 to 2008. These cloud structures are also compared to their counterparts as derived from ERA-interim reanalysis. A marked vertical tilting structure in cloud water is illustrated during the northward propagation of the BSISV based on both datasets. Increased cloud liquid water content (LWC) tends to appear to the north of the rainfall maximum, while ice water content (IWC) in the upper troposphere slightly lags the convection. This northward shift of increased LWC, which is in accord with local enhanced moisture as previously documented, may play an important role in the northward propagation of the BSISV. The transition in cloud structures associated with BSISV convection is further demonstrated based on CloudSat, with shallow cumuli at the leading edge, followed by the deep convective clouds, and then upper anvil clouds. Some differences in cloud water structures between CloudSat and ERA-interim are also noted, particularly in the amplitudes of IWC and LWC fields. 相似文献
5.
利用观测分析资料和SINTEX-F海气耦合长时间(70年)数值模拟结果,分析了印度洋海温年际异常与热带夏季季节内振荡(BSISO)各种传播模态之间关系及其物理过程。结果表明,印度洋海温年际异常与热带BSISO关系密切,当印度洋为正(负)偶极子情况,中东印度洋北传BSISO减弱(加强);当印度洋为正(负)海盆异常(BWA)情况,印度洋西太平洋赤道地区(40°E -180°)东传BSISO加强(减弱)。印度洋海温年际变化通过大气环流背景场和BSISO结构影响热带BSISO不同传播模态强度的年际变化。在负(正)偶极子年夏季,由于对流层大气垂直东风切变加强(减弱),对流扰动北侧的正压涡度、边界层水汽辐合加强更明显(不明显),导致形成BSISO较强(弱)的经向不对称结构,因此北传BSISO偏强(减弱)。印度洋BWA模态通过影响赤道西风背景以及海气界面热力交换,导致赤道东传BSISO强度产生变化。在正BWA年夏季,赤道地区西风较明显,当季节内振荡叠加在这种西风背景下,扰动中心的东侧(西侧)风速减弱(加强)更明显,海面蒸发及蒸发潜热减弱(加强)更明显,导致扰动中心的东侧(西侧)海温升高(降低)幅度更大,从而使边界层产生辐合(辐散)更强、水汽更多(少),因此赤道东传BSISO偏强;而在负BWA年,赤道地区西风背景减弱,以上物理过程受削弱使赤道东传BSISO偏弱。 相似文献
6.
Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979 下载免费PDF全文
Arctic sea ice concentration (ASIC) in boreal autumn exhibits prominent interannual variability since 1979. The physical mechanism responsible for the year-to-year variation of ASIC is investigated through observational data analyses and idealized numerical modeling. It is found that the ASIC interannual variability is closely associated with the anomalous meridional circulations over the Northern Hemisphere, which is further linked with the tropical sea surface temperature (SST) forcing. A tropics-wide SST cooling anomaly leads to an enhanced meridional SST gradient to the north of the equator in boreal summer, generating strengthened and northward shifting Hadley circulation over the Northern Hemisphere. Consequently, the meridional circulations are enhanced and pushed poleward, leading to an enhanced descending motion at the North Pole, surrounded by an ascending motion anomaly; the surface outflow turns into easterly anomalies, opposing the mean-state winds. As a result, positive cloudiness and weakened surface wind speed emerge, which reduce ASIC through changes in the surface latent heat flux and the downward longwave radiation. 相似文献
7.
Shangfeng Chen Xiaolong Chen Ke Wei Wen Chen Tianjun Zhou 《Theoretical and Applied Climatology》2014,115(3-4):667-683
Vertical tilt structure of the East Asian trough (EAT) and its interannual variation mechanism in boreal winter are studied using NCEP/NCAR, ERA40, and NCEP/DOE reanalyses. A vertical tilt index (VTI) is defined as the mean slope of vertical trough line on the longitude-height cross section to describe the tilting extent of the EAT, with high index indicating a more west-tilted trough and vice versa. The VTI series derived from the three reanalysis datasets are highly correlated with each other during the corresponding periods. A significant positive correlation is found between the VTI and the zonal range of the vertical trough line. Based on the close relation, a possible physical mechanism is proposed to explain the interannual variation of VTI. It demonstrates that positive (negative) temperature anomalies within the mean zonal range of the EAT result in expansion (contraction) of the zonal range and lead to high (low) VTI years. The composite analyses based on the three reanalysis datasets well support the proposed mechanism. Furthermore, the general relationship between the VTI and the zonal temperature gradient is discussed based on the proposed mechanism. It is revealed that the asymmetric change of temperature gradient on the western and eastern sides of the EAT plays an important role in the variation of VTI, which suggests that the tilting extent of the EAT is strongly affected by the two-order zonal change of temperature instead of the zonal temperature gradient (i.e., one-order change). Climate variability not only in the simultaneous winter but also in the following spring and summer over East Asia is closely related to the variation of the VTI. This study on the vertical tilting of the EAT may enrich knowledge of the East Asian winter monsoon and the climate variability over East Asia and may be helpful in improving the regional climate prediction in East Asia. 相似文献
8.
The interannual variability of the global carbon cycle 总被引:2,自引:0,他引:2
9.
Summary High resolution aircraft observations made along flight tracks over inhomogeneous surface in the late wintertime boreal zone
are described and compared to 2D mesoscale model simulations with surface properties defined at 2 km resolution from maps.
All observations displayed the expected small-scale turbulence. On top of that, the near-surface wind speeds (but not directions)
showed mesoscale variations related to local topography and roughness. Upward (but not downward) SW and LW radiative fluxes
and ground temperature also displayed mesoscale variability; in SW radiation this was clearly due to local albedo changes.
In the sensible heat flux there was strong horizontal variation near the surface in correlation with surface types. The above
observed mesoscale along-track variations were reasonably well represented by the mesoscale model simulation. The track-averaged
observed sensible and latent heat flux profiles were in rough agreement with a mixing length approach, which used the track-averaged
wind, temperature and moisture profiles as input (mimicking a first-order turbulence closure scheme of a GCM).
Received September 20, 1999 Revised January 21, 2000 相似文献
10.
Liu Fei Zhao Jiuwei Fu Xiouhua Huang Gang 《Theoretical and Applied Climatology》2018,131(3-4):1387-1395
Theoretical and Applied Climatology - By conducting idealized experiments in a general circulation model (GCM) and in a toy theoretical model, we test the hypothesis that shallow convection (SC) is... 相似文献
11.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude. 相似文献
12.
Realistic simulation of the internal variability of the climate system is important both for climate change detection and
as an indicator of whether the physics of the climate system is well-represented in a climate model. In this work zonal mean
atmospheric temperatures from a control run of the second Hadley Centre coupled GCM are compared with gridded radiosonde observations
for the past 38 years to examine how well modelled and observed variability agree. On time scales of between six months and
twenty years, simulated and observed variability of global mean temperatures agree well for the troposphere, but in the equatorial
stratosphere variability is lower in the model than in the observations, particularly at periods of two years and seven to
twenty years. We find good agreement between modelled and observed variability in the mass-weighted amplitude of a forcing-response
pattern, as used for climate change detection, but variability in a signal-to-noise optimised fingerprint pattern is significantly
greater in the observations than in a model control run. This discrepancy is marginally consistent with anthropogenic forcing,
but more clearly explained by a combination of solar and volcanic forcing, suggesting these should be considered in future
`vertical detection' studies. When the relationship between tropical lapse rate and mean temperature was examined, it was
found that these quantities are unrealistically coherent in the model at periods above three years. However, there is a clear
negative lapse rate feedback in both model and observations: as the tropical troposphere warms, the mid-tropospheric lapse
rate decreases on all the time scales considered.
Received: 11 August 1998 / Accepted: 20 July 1999 相似文献
13.
Summary Latitude-altitude structure of ozone QBO over the tropical-subtropical stratosphere (40° S–40° N) has been explored by analyzing
Microwave Limb Sounder (MLS) aboard Upper Atmospheric Research Satellite (UARS) data for the period 1992–1999 using the multifunctional
regression model. The inferred ozone QBO shows two maxima located at 22 hPa and 10 hPa with coefficient of 2–3% per 10 m/s
centered at the equator. The equatorial maxima are out of phase with each other. Subtropics exhibit two peak structure near
14 hPa but of opposite sign to that of equatorial maximum near 10 hPa. Over the equatorial region, positive (zonal winds westerly)
coefficients overlay negative (zonal winds easterlies) coefficients which descend with time. A pattern of equatorial maximum
and two subtropical minima appears in the months December to February near 10 hpa and it propagates upward with progression
of seasons. Equatorial QBO is seasonally asynchronous while subtropical QBO is seasonally synchronous.
Correspondence: Suvarna Fadnavis, Physical Meteorology and Aerology Division, Indian Institute of Tropical Meteorology, Dr.
Homi Bhabha Road, Pashan, Pune 411008, India 相似文献
14.
The recent INSTANT measurements in the Indonesian archipelago revealed a broad spectrum of time scales that influence Indonesian Throughflow (ITF) variability, from intraseasonal (20–90 days) to interannual. The different time scales are visible in all transport and property fluxes and are the result of remote forcing by both the Pacific and Indian Ocean winds, and local forcing generated within the regional Indonesian seas. This study focuses on the time-dependent three-dimensional intraseasonal variability (ISV) in the ITF region, in particular at the locations of the INSTANT moorings at the Straits of Lombok, Ombai and Timor. Observations from the INSTANT program in combination with output from the Bluelink ocean reanalysis provide a comprehensive picture about the propagation of ISV in the ITF region. The reanalysis assimilates remotely sensed and in situ ocean observations into an ocean general circulation model to create a hindcast of ocean conditions. Data from the reanalysis and observations from the INSTANT program reveal that deep-reaching subsurface ISV in the eastern Indian Ocean and ITF is closely linked with equatorial wind stress anomalies in the central Indian Ocean. Having traveled more than 5000 km in about 14 days, the associated Kelvin waves can be detected as far east as the Banda Sea. ISV near the Straits of Ombai and Timor is also significantly influenced by local wind forcing from within the ITF region. At the INSTANT mooring sites the ocean reanalysis agrees reasonably well with the observations. Intraseasonal amplitudes are about ±1.0 °C and ±0.5 m/s for potential temperature and velocity anomalies. Associated phases of ISV are very similar in observations and the reanalysis. Where differences exist they can be traced back to likely deficits in the reanalysis, namely the lack of tidal dissipation, insufficient spatial resolution of fine-scale bathymetry in the model in narrow straits or errors in surface forcing. 相似文献
15.
The Interannual Variability and Predictability in a Global Climate Model 总被引:13,自引:0,他引:13
TheInterannualVariabilityandPredictabilityinaGlobalClimateModel①WangHuijun(王会军),XueFeng(薛峰)andBiXunqiang(毕训强)LASG,Instituteof... 相似文献
16.
17.
The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 project 总被引:1,自引:0,他引:1
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation. 相似文献
18.
The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990–2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November–December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air–sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February–March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air–sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater cooling of the near-surface layers during the summer monsoon season of the preceding year. On the other hand, the downwelling Rossby wave is stronger during pre-monsoon months during the strong ASWP regime when compared to weak ASWP regime leading to lesser cooling during strong ASWP regime. 相似文献
19.
Fei Liu Lei Zhou Jian Ling Xiouhua Fu Gang Huang 《Theoretical and Applied Climatology》2016,124(3-4):847-854
20.
L. M. Druyan 《Meteorology and Atmospheric Physics》1998,65(1-2):55-75
Summary Components of the June-September climate over the Sahel are investigated in simulations with the GCM of the NASA/Goddard Institute for Space Studies, forced by SST observed during 1987 and 1988. The study analyzes the role of the synoptic patterns in determining precipitation differences between the two seasons, with special attention given to African wave disturbances (AWD). Emphasis is placed on deducing the characteristics of individual systems which may be missed by spectral and/or composite analyses. Results are derived from time-longitude cross-sections and spatial distributions of daily and weekly averages of key climatological variables. Despite the overall rainier season, rainless AWD are more prevalent in the simulations corresponding to June–September 1988 forcing than for 1987. Daily precipitation is shown to be highly correlated with mid-tropospheric vorticity, near surface convergence and 200 mb divergence. August daily rainfall was some-what better correlated with implied large scale vertical motion for 1988 forcing, emphasizing the dominance of broad circulation influences during that summer. While significant rainfall variability is attributed to AWD, quasistationary mechanisms cannot be ignored. In these simulations, upper tropospheric divergence modulated by changes in the Tropical Easterly Jet serves to both intensify the rainfall triggered by AWD and to sustain broader rainfall patterns during events of massive uplift.With 16 Figures 相似文献