首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
In this study, we propose and implement a Bayesian model to estimate a central equivalent dose from a set of luminescence measurements. This model is based on assumptions similar to the ones used in the standard statistical pipeline (typically implemented in the Analyst software followed by a subsequent central equivalent dose analysis) but tackles some of its main limitations. More specifically, it consists of a three-stage hierarchical model that has two main advantages over the standard approach: first, it avoids the introduction of auxiliary variables (typically mean and variance), at each step of the inference process, which are likely to fail to characterise the distributions of interest; second, it ensures a homogeneous and consistent inference with respect to the overall model and data. As a Bayesian model, our model requires the specification of prior distributions; we discuss such informative and non-informative distributions and check the relevance of our choices on synthetic data. Then, we use data derived from Single Aliquot and Regenerative (SAR) dose measurements performed on single grains from laboratory-bleached and dosed samples. The results show that our Bayesian approach offers a promising alternative to the standard one. Finally, we conclude by stressing that, relying on a Bayesian hierarchical model, our approach could be modified to incorporate additional information (e.g. stratigraphic constraints) that is difficult to formalise properly with the existing approaches.  相似文献   

2.
Many dating techniques include significant error terms which are not independent between samples to date. This is typically the case in Optically Stimulated Luminescence (OSL) dating where the conversion from characteristic equivalent doses to the corresponding ages using the annual dosimetry data includes error terms that are common to all produced datings. Dealing with these errors is essential to estimate ages from a set of datings whose chronological ordering is known. In this work, we propose and we study a Bayesian model to address this problem. For this purpose, we first consider a multivariate model with multiplicative Gaussian errors in a Bayesian framework. This model relates a set of characteristic equivalent doses to the corresponding ages while taking into account for the systematic and non-systematic errors associated to the dosimetry. It thus offers the opportunity to deal properly with stratigraphic constraints within OSL datings, but also with other datings possessing errors which are independent from systematic errors of OSL (e.g. radiocarbon). Then, we use this model to extend an existing Bayesian model for the assessment of characteristic equivalent doses from Single Aliquot and Regenerative (SAR) dose measurements. The overall Bayesian model leads to the joint estimation of all the variables (which include all the dose–response functions and characteristic equivalent doses) of a sequence of, possibly heterogeneous, datings. We also consider a more generic solution consisting in using directly the age model from a set of characteristic equivalent dose estimates and their associated standard errors. We finally give an example of application on a set of five OSL datings with stratigraphic constraints and observe a good adequacy between the two approaches.  相似文献   

3.
Abstract   Two groups of Quaternary faults occur in the southeastern Korean Peninsula. The first group is north-northeast-striking, high-angle dextral strike–slip faults. The second group is north-northeast-striking, low-angle reverse faults that represent the reactivation of the pre-existing normal faults. Optically stimulated luminescence dating of Quaternary sediments cut by one of the reverse faults constrains the faulting age to post-32 Ka. These faults seem to be capable of further slip under the current tectonic stress regime, as determined by recent earthquake events in northeast Asia. Therefore, the traditional concept that the southeastern Korean Peninsula is seismically stable should be reappraised.  相似文献   

4.
In an effort to better understand chronology of alluvial episodes in Cuyama Valley in the western Transverse Ranges of California, USA, we employed optically stimulated luminescence, radiocarbon and cosmogenic radionuclide surface exposure dating methods. Twenty-one optical dates ranging from 0.01 to 27 ka were obtained from exposures of late-Holocene axial-fluvial deposits, Pleistocene–Holocene alluvial-fan deposits, and axial-fluvial sands interbedded within a late Pleistocene alluvial fan. These were cross-checked with 37 AMS radiocarbon dates from charcoal and wood from within a and five 10Be surface exposure dates from boulders on alluvial-fan surfaces. The OSL results show generally good stratigraphic consistency, logical comparison with the radiocarbon and cosmogenic data, and appear to be the best method for accurate dating within deposits of this nature because suitable material is fairly easy to find in these environments. The radiocarbon data contained numerous “detrital ages”, but well-bedded lenses of apparently in situ or minimally transported charcoal provide reliable age estimates for the associated alluvium. Radiocarbon dating of detrital charcoal in the older alluvial fan deposits was problematic. Our cosmogenic surface-exposure dating was consistent stratigraphically and with our other data, but we were unable to determine its accuracy due to the limited number of samples and the possibility of inherited radionuclides and post-depositional erosion. In light of our results, we suggest that OSL dating using the latest analytical techniques combined with rigorous methods for estimation of paleodase is reliable and of increasing utility in otherwise difficult-to-date coarse alluvial environments in the southwestern United States and elsewhere.  相似文献   

5.
Linking the timing of glacial episodes and behaviour to climatic shifts that are documented in ice and marine sedimentary archives is key to understanding ocean-land interactions. In the NW Scottish Highlands a large number of closely spaced (‘hummocky’) moraines formed at retreating glacier margins. Independent age control on one palaeo-glacier limit is consistent with the timing of Younger Dryas (YD) glaciation in the area, but adjacent glacier lobes have remained undated due to the lack of sites and material for 14C dating. Direct dating of ice-marginal moraines using optically stimulated luminescence (OSL) techniques has never been attempted before in Scotland, but if successful, they may be the most appropriate methods for constraining the age of sediment deposition in the absence of organic material. Coarse-grained quartz and K-feldspar minerals from supraglacial sheet flow deposits and glacilacustrine sediments within ice-marginal moraines were analysed using the single-aliquot regenerative-dose (SAR) protocol. Independent age control and clear geomorphological relationships indicate that all samples should yield YD or post-Last Glacial Maximum (LGM) ages. Quartz OSL shine down curves showed low luminescence sensitivity, significant medium-to-slow components, a weak fast component, and scattered SAR data; Linearly Modulated-OSL (LM-OSL) measurements confirmed that the fast component was weak or absent. In contrast, feldspar infrared stimulated luminescence (IRSL) was highly sensitive with excellent SAR data. However, SAR data from 3 mm diameter aliquots of feldspar (200 grains) give higher than expected equivalent doses (De) by an order of magnitude. SAR measurements of small clusters of feldspar grains (ranging from 1–8) considerably broaden the apparent De distribution, but even the lowest value is about 2–3 times the expected De. Two possibilities arise to explain the quartz and feldspar data: (1) that glacial sequences in the NW Highlands re-work inherited (older) glacial deposits and that some of the pre-Devensian existing glacial landforms have only been modified during Devensian glaciation; or (2) that the sedimentary processes operating in these ice-marginal environments are not conducive to adequate bleaching of quartz and feldspar grains. Our study implies that ice-proximal supraglacial sediments from this region in NW Scotland reflect older ages of deposition, but dating YD sediments has not been possible.  相似文献   

6.
Ocean Drilling Program Site 658 lies under the North African summer dust plume, and ought to be an ideal target for optically stimulated luminescence (OSL) dating, since the main clastic input is far-travelled Saharan dust. However, OSL ages for coarse silt-sized quartz (40–63 μm) are systematically lower than independent age estimates when dose rates are calculated using a model which assumes detrital 238U, 232Th and 40K and excess 230Th and 231Pa. Ages which are in good agreement with independent age control are obtained from the coarse silt samples when a correction for authigenic uranium uptake is incorporated into the dose rate model. Authigenic uranium uptake occurs under reducing conditions, which are common at the sediment–water interface, and some degree of authigenic uranium correction may be required for most marine sediments. Using this revised dose rate model, ages produced using fine silt-sized quartz (4–11 μm) are up to 100% older than both independent and coarse silt ages. In addition, the fine silt ages show a consistent pattern of age decrease with depth over 1.5 m of core. 230Th data from Site 658 indicate that this site receives 3 times more sediment laterally than vertically. It is concluded that the fine silt at Site 658 contains a substantial reworked component, making it unsuitable for dating. Conversely the coarse silt fraction, which settles through water at ∼40 times the rate of fine silt, appears to be derived from dust input over the site at the time of deposition. Since prominent nepheloid (cloudy) layers occur in various deep ocean basins, and the material suspended in these layers often consists of reworked fine silt-sized sediments, coarser material should be dated where possible.  相似文献   

7.
The presence of genuinely zero-age or near-zero-age grains in modern-age and very young samples poses a problem for many existing burial dose estimation procedures used in optical (optically stimulated luminescence, OSL) dating. This difficulty currently necessitates consideration of relatively simplistic and statistically inferior age models. In this study, we investigate the potential for using modified versions of the statistical age models of Galbraith et al. [Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–364.] to provide reliable equivalent dose (De) estimates for young and modern-age samples that display negative, zero or near-zero De estimates. For this purpose, we have revised the original versions of the central and minimum age models, which are based on log-transformed De values, so that they can be applied to un-logged De estimates and their associated absolute standard errors. The suitability of these ‘un-logged’ age models is tested using a series of known-age fluvial samples deposited within two arroyo systems from the American Southwest. The un-logged age models provide accurate burial doses and final OSL ages for roughly three-quarters of the total number of samples considered in this study. Sensitivity tests reveal that the un-logged versions of the central and minimum age models are capable of producing accurate burial dose estimates for modern-age and very young (<350 yr) fluvial samples that contain (i) more than 20% of well-bleached grains in their De distributions, or (ii) smaller sub-populations of well-bleached grains for which the De values are known with high precision. Our results indicate that the original (log-transformed) versions of the central and minimum age models are still preferable for most routine dating applications, since these age models are better suited to the statistical properties of typical single-grain and multi-grain single-aliquot De datasets. However, the unique error properties of modern-age samples, combined with the problems of calculating natural logarithms of negative or zero-Gy De values, mean that the un-logged versions of the central and minimum age models currently offer the most suitable means of deriving accurate burial dose estimates for very young and modern-age samples.  相似文献   

8.
In optical dating, the last time that a sample of sediment was exposed to sunlight is determined by dividing its equivalent dose (De) by the dose rate. For single-grain dating, the sample De is based on the statistical analysis of the distribution of De values estimated for individual grains, whereas the dose rate is usually determined from measurements of the environmental radioactivity of the bulk sample, together with allowances for radiation sources internal to the grains and cosmic rays. Conventionally, the De and dose rate are measured and analysed separately to produce an estimate of the depositional age of a sample, but this approach may result in loss of information because distributions of single-grain De values are influenced by several factors. Existing statistical models do not incorporate all the key information contributing to age estimation, such as the pattern and scale of dispersion of single-grain De values and dose rates, the associated measurement uncertainties, the effect of natural variability among grains, and the outlier probabilities of De and dose rate estimates. Here we propose an empirical Bayesian hierarchical age model (BHAM) for optical dating of quartz samples that incorporates the above information to estimate their depositional ages. The BHAM is based on the implementation of standardised growth curve and LnTn methods to integrate information on the full distribution of single-grain De values, sources of measurement uncertainty, beta-dose heterogeneity (observed or modelled), and detection of outliers. We present the results of validation tests using data sets of optically stimulated luminescence measurements and dose rates obtained for quartz samples dated previously from Denisova Cave (Russia) and for simulated samples. We conclude that the BHAM represents a robust and flexible approach to dealing with data for single grains of quartz within a Bayesian hierarchical framework and is suitable for application to sediments deposited in a variety of depositional settings.  相似文献   

9.
The sensitivity of the optically stimulated luminescence (OSL) from quartz is thought to be mainly influenced by source rock (crystallization temperature and quartz defect types) and depositional history (irradiation/bleaching cycles). In this study, the OSL sensitivity of quartz of different grain sizes from loess (L1) and paleosol (S1) layers at the Xifeng section of the Chinese Loess Plateau was analyzed. The OSL sensitivity of the samples from the Xifeng section shows a distinct difference between glacial and interglacial cycles, which is consistent with the patterns observed from magnetic susceptibility (MS) and grain sizes. The highest OSL sensitivity is observed in S1, which is twelve times the lowest sensitivity observed in L1. Moreover, the contribution of the fast component of quartz OSL from the paleosol accounts for more than 90% of the total OSL signal. In contrast, the middle and slow components contribute more in loess, and a significant variation among different aliquots was observed.Comparison of the data obtained from loess sections from different regions, including Xifeng, Luochuan, Jingyuan and Shimao, show significant differences in the magnitudes of OSL sensitivity but a similar pattern between glacial and interglacial periods. The results of this study suggest that, except for the wildfire model proposed to interpret the high OSL sensitivity in paleosol (Zhang, 2018), the shift of wind pattern of westerly wind (i.e., transporting “dim” source from North Tibetan Plateau and northwesterly wind (i.e., transporting “bright” source from Alxa Arid Lands and the subsequent mixture from the different sources may partially contribute to the different OSL sensitivities observed for Xifeng and Luochuan. In contrast, the OSL sensitivity of Shimao samples from L1 was affected by the input from the Mu Us Desert, and those of Jingyuan may affected by the contribution from the Yellow River.  相似文献   

10.
This study applies single-grain optically stimulated luminescence (SG OSL) dating of quartz sand temper to Intermountain Ware ceramics recovered from four archaeological sites in northwestern Wyoming, USA. We show that SG OSL dating can strengthen and further refines existing archaeological site chronologies in certain settings. The SG OSL results are compared to multi-grain infrared stimulated luminescence (IRSL) dating of the polymineral (feldspar and quartz) silt fraction in the ceramic paste of the same sherds. Results from the two methods are statistically indistinguishable, although coarse-grained quartz SG OSL ages have consistently lower standard error terms due to higher relative sensitivity and avoidance of anomalous fading calculations. Moreover, the SG OSL results produced precision at two-sigma standard error greater than or equal to associated calibrated radiocarbon ages. SG OSL dating of quartz temper from Intermountain Ware ceramics provides more reliable site occupation timing than radiocarbon dating, which can be conditioned by incorporation of old wood and contamination from young soil carbon. This study highlights the importance of SG OSL dating on sherds from buried contexts when exposure to wildfires may have occurred, as ceramics recovered from the ground surface of one site after a high-intensity fire produced near-modern apparent ages, suggesting they were thermally reset during the fire. We suggest SG OSL should be applied to date similar ceramics with quartz temper to determine site age and bolster regional chronologies.  相似文献   

11.
The paleogeography of Amazonia lowlands during the Pleistocene remains hampered by the lack of reliable absolute ages to constrain sediment deposition in the hundred thousand to few million years timescales. Optically stimulated luminescence (OSL) dating applied to quartz has provided important chronological control for late Quaternary sediments, but the method is limited to the last ∼150 ka. In order to extend the age range of luminescence dating, new signals from quartz have been investigated. This study tested the application of isothermal thermoluminescence (ITL) and thermally transferred optically stimulated luminescence (TT-OSL) signals of quartz for dating of fluvial terraces from eastern Amazonia. ITL and TT-OSL signals measured in a modern fluvial sediment sample have shown small residual doses (4 and 16 Gy), suggesting adequate bleached sediments for the target dose range (>150 Gy). This sample responded well to dose recovery test, which showed that the ITL and TT-OSL signals grow to higher doses compared to the doses estimated by the conventional OSL signal. The ITL signal saturated for doses significantly lower than doses reported in the literature. Most dating samples were beyond the ITL saturation doses and only TT-OSL signals were suitable to estimate equivalent doses. Burial ages ranging from 107 to 340 ka were estimated for the fluvial terraces in the lower Xingu River. The main ages uncertainties are related to dose rate changes through time. Despite the uncertainties, these ages should indicate a higher channel base level during the Middle Pleistocene followed by channel incision, possibly due to episodes of increased precipitation in the Xingu watershed.  相似文献   

12.
The development of functional portable optically stimulated luminescence (OSL) readers over the last decade has provided practitioners with the capability to acquire luminescence signals from geological materials relatively rapidly, which allows for expedient preliminary chronostratigraphic insight when working with complex depositional systems of late Quaternary age. Typically, when using the portable OSL reader, infrared (IR) or blue post-IR OSL signals are acquired from bulk unprocessed materials, in contrast to regular luminescence dating, which is usually based on measurements on pure quartz or feldspar mineral separates, or on select silt-sized polymineralic portions. To demonstrate the utility of portable OSL measurements, this paper outlines the basic features of portable OSL readers and their constraints. Subsequently, case studies in which the instrument has been used to elucidate cryptostratigraphic variations in sedimentary sequences for geomorphological applications are reviewed. The studies can generally be grouped into three main categories. The first includes studies where the variation of portable OSL reader luminescence signal intensities with depth are plotted to generate profiles that contextualize sediment stratigraphy. In the second group, portable OSL reader luminescence signal intensities are used to interpret sediment processes that shed light on depositional histories. In the last category, luminescence signals from the portable OSL reader are calibrated to approximate numerical burial ages of depositional units. The paper concludes with a discussion of possible future directions. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
The discovery of a cryptotephra (nonvisible volcanic horizon) in a windblown sand archaeological site in Poland highlights how luminescence and tephrostratigraphy may combine to better refine the chronology of such sites. In this study we identify a cryptotephra horizon which on the basis of major and minor element geochemistry and an OSL age of 2.3 ± 0.1 ka is correlated to the Glen Garry tephra. The different methodological strengths of OSL and tephrostratigraphy may be harnessed to counter the limitations of a single approach to produce a more secure chronology. Although in this study the tephra deposition event is shown to post-date the archaeological activity, the methodological approach is clearly demonstrated. Further investigations will reveal if cryptotephra layers are commonly preserved in such environmental settings. If this is so then future applications of this approach may prove to be more widely applicable.  相似文献   

14.
Five Plio-Pleistocene to Holocene aeolian quartz samples from the coastal dune deposits of the Wilderness-Knysna area (South Africa) previously dated by OSL were selected for ESR dating. Samples were processed following the Multiple Centre approach and using the Multiple Aliquot Additive dose method. Aluminium (Al) and Titanium (Ti) signals were systematically measured in all samples.Our study shows that ESR results obtained for Middle Pleistocene to Holocene samples may be strongly impacted by (i) the presence of a significant high frequency noise in the ESR spectra acquired for the Ti signals and (ii) the choice of the fitting function employed. In particular, if not taken into account, very noisy spectra can lead to a significant overestimation of the true ESR intensity measured for the Ti–H signal. These sources of uncertainty are however not sufficient to remove the ESR age overestimations. Consequently, our results indicate that the Al and Ti ESR signals of these quartz samples have not been fully reset during their aeolian transport.While this work contributes to improve our understanding of the ESR method applied to quartz grains, and especially of the potential and limitations of the Ti signals, it also provides additional baseline data to illustrate the existing variability among quartz samples of different origins or sedimentary context. Our results are consistent with previous studies by confirming that the Ti–H signal shows the best potential for the evaluation of low dose values (<100 Gy for these samples), whereas it becomes inappropriate for the higher dose range, and the Ti–Li–H (option D sensu Duval and Guilarte, 2015) should be used instead.Beyond the methodological outcome, this ESR dating study also provides a useful addition to the existing chronology of the aeolian deposits in this region. In particular, new (and possibly) finite numerical age results were obtained for the two oldest samples, constraining the aeolianite landward barrier dune and the coversand formations to the MIS 10-8 and Pliocene, respectively.  相似文献   

15.
Dating of quartz by optically stimulated luminescence (OSL) has been revolutionized with introduction of the test dose (TD) in development of a measurement sequence known as the single-aliquot regenerative-dose (SAR), whereby a valid sensitivity correction for the luminescence signal is provided in the measurement cycle. However, the size of the TD used in the SAR protocol remains controversial. Previous studies show that the TD has little effect on the equivalent dose (De) for young samples in luminescence dating in which the applicability of different deposits varies greatly in different regions. However, detailed studies are lacking on how TD size affects SAR–OSL results of samples with a relatively high De range. In this study, typical loess samples with high De values (∼60 Gy–∼250 Gy) from the eastern Tibetan Plateau were selected to investigate the effects of variation in TD size on the quartz SAR–OSL protocol. Dose recovery tests show that a known dose could be recovered successfully by applying different TDs. Test dose size has an effect on shapes of regenerated dose–response curves (DRCs) and has different influences on Des and characteristic saturation doses for quartz samples with a high dose range. A TD size of 20%–30% De is a good compromise for Tibetan loess with De of ∼60–120 Gy in the quartz SAR protocol, and a TD size larger than 30% should be considered for samples with a larger De. The results of this study highlight the importance of TD size in the SAR–OSL protocol for quartz samples with a high dose range.  相似文献   

16.
The infrared (IR) stimulated luminescence (IRSL) and post-IR IRSL (pIRIR) signals from K-feldspar can, for convenience, be divided into two components, bleachable and ‘non-bleachable’, where the latter corresponds to the ‘residual’ signal observed in sunlight-bleached samples. In this paper, we examine the non-bleachable component of IRSL of K-feldspar for several sedimentary samples from across Eurasia. We observed a large variability in the residual doses among these samples after prolonged exposure to sunlight. By employing multiple elevated temperature (MET) IR stimulations at 50–300 °C, we show that the residual dose increases systematically with stimulation temperature, attaining values as high as ∼50 Gy at 300 °C, even after several hours to tens of hours of exposure to unfiltered sunlight. We examined two samples in detail and found that the bleachable and non-bleachable components produced different dose response curves. Pulse annealing studies showed that the non-bleachable component is more stable than the bleachable component, suggesting that a preheat procedure cannot eliminate the non-bleachable component. Additional experiments revealed that the non-bleachable component is dose dependent. Owing to this dose dependency, we demonstrate mathematically and empirically that the simple subtraction of a residual dose from the measured equivalent dose (De) – which is the most common approach employed (if any residual dose is subtracted at all) – will result in underestimation of the actual De. We present a method to correct for the dose dependency of the residual dose, which can improve the accuracy of either MET-pIRIR or pIRIR age estimates for samples in which the non-bleachable component represents a significant fraction of the measured signals.  相似文献   

17.
In the quest for extending the upper age limit of optically stimulated luminescence (OSL) dating of quartz, it was shown that violet stimulated luminescence (VSL) may be a promising candidate. However, difficulties in the application of the single aliquot regenerative dose (SAR) protocol for VSL has been reported in previous studies. In this study, a set of experiments was carried out to investigate the behaviour of the VSL signal under different measurement conditions with the aim to improve the SAR VSL protocol in terms of passing the procedural tests of the SAR protocol, i.e., recycling ratio, recuperation and dose recovery. The validity of an optimised SAR protocol was then evaluated on four coarse-grained quartz samples from Sardinia, for which previously reported OSL and post-IR IRSL ages are available. Our result showed that all measured aliquots meet the recuperation, recycling ratio and dose recovery criteria, indicating that the proposed protocol is suitable for the studied samples. The obtained VSL and reference ages agree within uncertainty (2σ) for most of the samples except one sample with a largest expected equivalent dose of ∼320 Gy, for which the VSL significantly (∼50%) underestimates despite satisfactory dose recovery result. This underestimation is most likely due to trapping sensitivity change between the natural and all subsequent regenerated VSL signals induced by the first preheating in the SAR procedure, which is likely dose dependent. To minimise sensitivity change, the sensitivity-corrected multiple aliquot regenerative dose (SC-MAR) protocol was applied. The SC-MAR protocol yields VSL ages in agreement with reference ages for two samples (1σ); the other two samples show overestimation. We show that the observed age overestimation can be explained by incomplete resetting of the natural signal after 7 days SOL2 exposure used for the SC-MAR procedure. Bleaching experiments confirm variable bleaching behaviour among different samples. However, it is unclear whether this different bleaching behaviour arises from measuring samples with different bleaching histories, mineralogical compositions, or VSL source trap properties.  相似文献   

18.
Optically stimulated luminescence (OSL) dating of perennially frozen loess was tested on quartz grains extracted from deposits associated with the late Pleistocene Dawson tephra in western Yukon Territory, Canada. OSL samples were obtained from ice-rich loess bracketing the Dawson tephra, while radiocarbon (14C) samples were collected from the bulk sediments directly underlying the tephra and from a ground-squirrel burrow 2.7 m below the tephra. Here we report the OSL characteristics and ages of the extracted quartz grains, as well as additional radiocarbon ages for samples described in Froese [2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21, 2137–2142; 2006. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quaternary Science Reviews 25, 1542–1551]. We refine the time of Dawson tephra deposition to between 25,420±70 and 25,290±80 14C a BP. Bayesian analysis of constraining radiocarbon ages places the deposition of the Dawson tephra at between 30,433 and 30,032 cal a BP. Linear modulation (LM) OSL analysis of multi-grain aliquots of quartz showed that the initial part of the decay curve is dominated by a rapidly bleached (‘fast’) component; these samples, however, had relatively dim continuous wave (CW) OSL signals at the multi-grain aliquot (each composed of 80 grains) and single-grain scales of analysis. The single-aliquot regenerative-dose protocol was applied to multi-grain aliquots and single grains to obtain equivalent dose (De) values for samples collected from below and above the Dawson tephra. The De values were examined graphically and numerically, the latter using the central age, minimum age, and finite mixture models. For multi-grain aliquots, the central age model gave weighted mean De values between 30 and 50 Gy, which greatly underestimated the expected De of 74–81 Gy for both samples studied. Possible reasons for these underestimations are discussed, and a solution proposed based on single-grain analysis. Measurements of single grains produced De values in agreement with the expected De, and yielded OSL ages of 28±5 and 30±4 ka for the samples taken from above and below the Dawson tephra, respectively. Examination of individual grains with differing luminescence behaviors showed that a significant number of the measured quartz grains exhibited anomalous luminescence properties that would have compromised the results obtained from multi-grain aliquots. We therefore recommend analysis of individual grains to overcome the age-shortfall from multi-grain analysis of these and similar samples of quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号