首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, fine-grain quartz was used for luminescence dating for lava baked samples from different sites in Datong. Optical stimulated luminescence (OSL), thermal transferred OSL (TT-OSL)/recuperated OSL (Re-OSL) and thermoluminescence (TL) dating protocols were applied. For these samples, the OSL signals saturate at about 300–400 Gy, which limits their age to less than 100 ka based on their ambient dose rates. The TT-OSL/Re-OSL method has poor dose recovery. TL dating gives reliable results, and multiple-aliquot regenerative-dose TL method with sensitivity change correction based on the 325 °C TL peak of a test dose can be applied for samples up to 400 ka. The results indicate that the ages of the volcanoes in Datong are from 380 ka to 84 ka. The volcanic activity started earlier in the southeast area than those in the northwest part, which is consist with the literature data.  相似文献   

2.
The results of experiments which characterise the optically stimulated luminescence (OSL) signals of an ash sample (BI07-TL-05) from Barren Island are presented. The infrared stimulated luminescence signal decreases to 5% of its initial value when preheated at 150 °C for 10 s, suggesting that the infrared stimulated luminescence signal associated with the 290–390 nm emission in this sample arises from a single trap evicted by heating to 150 °C. The post-IR blue stimulated luminescence emission has greater thermal stability and arises from traps which are emptied by heating to temperatures between 120 °C and 240 °C. Dose recovery experiments demonstrate that a laboratory dose can be reliably determined to within 5% for the post-IR blue stimulated luminescence signal. However, the fading rate for the post-IR blue stimulation is high, and the g-value is estimated to be (9.6 ± 3.5)% per logarithmic decade for BI07-TL-05.  相似文献   

3.
In the present paper, we have investigated the thermal history of an archaeological ‘core sand’ from a cow-shaped bronze ornament attached to a cowrie container. It was unearthed at the Lijiashan site, located in southwest China, in the area of central Yunnan, and dates from the Han period (3 c. BC–2 c. AD). We compared the archaeological sample and a control sample of the modern quartz, examining the sensitivity of 110 °C TL and 210° C TL glow peaks, and sensitization characteristics of 110° C TL and OSL. Large differences between the ‘core sand’ samples and the control sand samples have been observed in our work. The firing temperature of the ‘core sand’ was determined to be 550–700 °C. The results offer a key to understanding the ‘core sand’ as a unique casting technique in Bronze Age Yunnan. These luminesence techniques form a new method for determining the historical firing temperature of archaeological material.  相似文献   

4.
This study focuses on characterizing the thermoluminescence (TL) and optically stimulated luminescence (OSL) of quartz in burnt clay, pottery, and the sediments unearthed from a Neolithic site, the Beicun site of the Liangzhu culture. It shows that the initial OSL signals (within 0.8 s) of most burnt clay and pottery sherds are not dominated by the fast component. Results of a heating simulation experiment of sediment quartz show that annealing at temperatures exceeding 600–800 °C decreased the proportion of the fast component in the initial signal slightly. In addition, the proportion of the medium component in the later signal (0.8–5 s) increased significantly, resulting in a decrease in the Fast Ratio value. Therefore, high annealing temperature may be an important reason for the slow decay rate of OSL signals of the burnt clay and pottery samples. The De(t) plot shows that most of the samples have thermally stable OSL component signals, which have no significant effect on the final OSL ages. The single-aliquot regenerative-dose (SAR) protocol was used to determine the OSL and TL ages for chunk burnt clay and pottery sherds. The high-precision age of the last archaeological heating event, such as sacrifice, burning, or domestic firing, can be obtained by determining the TL and OSL ages of a homogeneous chunk of burnt clay. The OSL results are consistent with the 14C age of carbon chips extracted from burnt clay. The age of the Beicun site is finally determined to be approximately 5000–5300 BP (BP represents before 2020), belonging to the early period of the Liangzhu culture.  相似文献   

5.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

6.
A modified multi-elevated-temperature post-IR infra-red stimulated luminescence (MET-pIRIR) protocol is proposed for dating young samples of Holocene age using K-feldspar. The protocol utilizes a five-step MET-pIRIR measurement with a moderate preheating of 200 °C for 60 s, and a narrow IR stimulation temperature increment of 30 °C (i.e., the five measurement temperatures are 50, 80, 110, 140 and 170 °C). Using this method, the residual doses of the MET-pIRIR signals are generally less than 1 Gy. Holocene aeolian samples from Northern China were tested using the 30°C-increment modified MET-pIRIR method. The results demonstrate that similar ages from 140 °C to 170 °C were obtained for our samples, which were consistent with the quartz optically stimulated luminescence (OSL) ages. Based on this observation, the measurement procedures are further simplified to a three-step pIRIR protocol. The first IR stimulation at elevated temperature (110 °C) is used to remove the fading affected signals. This is followed by two steps of IR stimulation at high temperatures (140 and 170 °C) for equivalent dose (De) measurement. Dating results consistent with the expected ages have been obtained at stimulation temperatures of 140 and 170 °C. It is suggested that the first IR stimulation can effectively remove the fading component. The three-step pIRIR method has minimized the experimental procedures, while keeping the age plateau test.  相似文献   

7.
Thermoluminescence (TL) signals of calcite can be used to potentially date geological and archaeological events back to several million years. However, several issues, such as spurious TL signals appearing at temperatures above 300 °C, have hindered its application to a wide range of samples. A single-aliquot regenerative-dose (SAR) protocol for calcite with low-temperature measurements is proposed to measure the equivalent dose (De). It uses the isothermal TL (ITL) signals measured at around 225-240 °C, where a De vs. ITL temperature (De-T) plateau can be observed. The width of the temperature range of such a plateau can be sample dependent, as it relates to the proportional contributions of the signals from corresponding TL peaks. The signal at the ITL temperature plateau range largely corresponds to the TL signals of the 280 °C TL peak. De values obtained by the SAR-ITL protocol are in agreement with those of the multiple-aliquot additive-dose (MAA)-TL and MAA-ITL protocols. The absence of detectable anomalous fading of ITL signals at 235 °C in this and previous studies indicates that the signal is free of fading. Dose recovery tests confirm the suitability of the SAR-ITL protocol for De estimation. The SAR-ITL protocol measured with temperatures below 300 °C avoids the effects of spurious luminescence signals induced by high-temperature heating. The dose-response curves for ITL signals at 230-235 °C have large characteristic saturation doses (D0) of ∼2000-2400 Gy. The SAR-ITL protocol for calcite thus has the potential to date geological and archaeological samples spanning the entire Quaternary period.  相似文献   

8.
Basaltic lava from Kilauea, Hawaii may have a red-brown surface, indicative of Fe-(hydr)oxides. This surface is not found where exposed to weathering, but at the interface between lava lobes, or in the interior of lava channels. We use several analytical techniques to determine how these Fe-(hydr)oxide surfaces may have developed. WDS-elemental distribution line profiles from the lava surface towards the lava′s interior detect an Fe-rich film of less than 5 μm thickness. Heat treatment of quenched, fresh lava samples of the same chemical composition between 600–1,090°C helps to replicate temperatures under which such an Fe-rich film might have formed. These experiments suggest that Fe-enrichment occurs above 1,020°C, whereas at lower temperatures Ca is enriched relative to Fe. One sample was treated below the glass transition temperature, at 600°C for 164 h. A depth profile with secondary neutral mass spectrometry shows an enrichment of Mg at the outer 50 nm of the glass surface. The formation of films requires cation migration, which is driven by an oxygen chemical potential between air and the reduced basalt (Fe2+/Fe3+ ratio of 13.3). The change of surface alteration from Mg to Ca film at lower temperatures, to predominantly Fe at high temperatures, is determined by a change of cation availability, largely controlled by crystallization that already occurs below 850°C, and volume crystallization that occurs above 925°C.  相似文献   

9.
In this study we test the potential of the elevated temperature infrared stimulated luminescence (IRSL) signals for dating Romanian loess. The recently developed post-IR IRSL protocol is applied to Romanian loess using polymineral fine grains extracted from the loess-palaeosol sequence at Mircea Vodă (SE Romania). This approach is aimed at obtaining an additional age control to examine the age discrepancy obtained from previous optically stimulated luminescence (OSL) studies using different grain-sizes of quartz (4–11 μm and 63–90 μm).Two preheat post-IR IR stimulation temperature combinations were used, 250–225 °C and 325–300 °C, respectively. The signals obtained are documented in terms of dose response curve, laboratory tests and fading. Although both post-IR IRSL signals exhibit small fading rates, dose response characteristics indicate that these rates may be laboratory artefacts. The post-IR IRSL signal stimulated at 300 °C is observed to suffer from dose dependent initial sensitivity changes as both natural and regenerated signals are observed to lie above the saturation level of the dose response curve. Uncorrected age results obtained using both post-IR IRSL signals are in general agreement with previously reported silt-sized quartz OSL ages for samples collected from the uppermost loess unit L1. For older material, the post-IR IRSL signal stimulated at 225 °C is considered to provide reliable age results, in agreement with independent age control available for this sequence.  相似文献   

10.
《Quaternary Geochronology》2008,3(1-2):114-136
We present chronological constraints on a suite of permanently frozen fluvial deposits which contain ancient DNA (aDNA) from the Taimyr Peninsula of north-central Siberia. The luminescence phenomenology of these samples is first discussed, focusing on the optically stimulated luminescence (OSL) decay curve characteristics, thermoluminescence (TL) properties, and signal compositions of quartz from these previously unstudied deposits. Secondly, we assess the suitability of these samples for OSL dating and present the OSL chronologies obtained using both single-grain and multi-grain equivalent dose (De) measurements. The results of our analyses reveal a large amount of inter-aliquot variability in OSL decay curve shape that is directly related to differences in the size of the 280 °C TL peak and the associated slowly bleached ‘S2’ OSL component. Longer OSL stimulation durations are adopted in the De measurement procedure to prevent the progressive build-up of slowly bleached signal components throughout successive single-aliquot regenerative-dose (SAR) measurement cycles. The use of low preheat temperatures in the SAR procedure also reduces the deleterious effects of these slowly bleached signal components. The resultant single-grain and multi-grain OSL chronologies obtained using this approach are stratigraphically consistent and are in close agreement with independently established 14C ages at our sites. The findings of this research reveal the potential of OSL dating as a means of providing a reliable chronometric framework for sedimentary aDNA records in permafrost environments.  相似文献   

11.
Unlike the well-studied optically stimulated luminescence (OSL) signal of (macrocrystalline) quartz, not much is known about OSL from natural amorphous and microcrystalline silicon dioxide. These materials – generally termed “silex” – were widely used for prehistoric tool production, and thermoluminescence (TL) is routinely applied do date the firing event of heated specimens. This study presents data on basic OSL characteristics of silex such as signal composition and component-resolved thermal stability as well as the applicability of OSL for dating of burnt lithic tools.Fitting of LM-OSL curves yielded similar components (mostly five) as observed for quartz, with the photoionization cross-sections being in the same order of magnitude for both materials. Three different methods (LM-OSL pulse annealing, short-shine pulse annealing as well as the varying heating rate method) were applied to study the thermal stability of components and allowed calculating trap parameters E and s, and hence the electron retention lifetime. Only the most light-sensitive (“fast-like”) component proved to be of sufficient thermal stability for dating applications, as evidenced from coherent experimental results. All other components already diminished at preheating temperatures > 200 °C. Pulse annealing measurements further indicate that electron populations sampled by OSL and those responsible for the ca. 380 °C TL-“dating peak” are not identical. Dose recovery tests applying an OSL-SAR protocol with “hot bleach” in between the regeneration cycles showed good reproducibility of a known dose if only the initial OSL signal (ca. 0–0.5 s at 90% LED power) is used. Finally, obtained OSL-SAR and TL ages based on the blue TL emission are in agreement within errors for two Middle Paleolithic archeological samples showing a “fast-like” component. These results verify the experimental findings of sufficient long-term stability of the initial OSL signal. Since not all silex specimens deliver a bright and stable OSL signal, optical ages of suitable samples may serve as an additional internal check for the paleodose estimate rather than substituting TL as a standard technique for dating of heated silex.  相似文献   

12.
Landforming processes are highly active in the Arctic, and luminescence dating can be used to establish a chronological framework for these processes. For example, luminescence ages of raised littoral and marine deposits provide the age control for many reconstructions of Pleistocene events in the Arctic. Due to the nature of the depositional environment (e.g. short transport distance, turbid water, long polar night) these types of sediment may not be completely zeroed at the time of deposition. To test the significance of incomplete bleaching in this type of environment, surface sediments were sampled along a transect from the margin of a glacier out into a nearby bay on NW Svalbard. The water in the bay is very turbid (secchi depth 0.1 m), but there is significant reworking by waves along the shores.Quartz optically stimulated luminescence (OSL) and feldspar infrared stimulated luminescence (IRSL) were measured using sand-sized grains. For quartz OSL and feldspar IRSL (50 °C) the ice-proximal sample showed relatively high doses (∼12 Gy) while nearby beach sand and shallow-marine deposits, as well as ice-distal sandur sediments, had much lower doses: most OSL doses were consistent with zero, while IRSL (50 °C) ranged from 0.5 to 6.5 Gy. Post-IR IRSL (290 °C) doses were overall much higher (∼20–55 Gy), which partly is due to a significant (∼12 Gy) unbleachable residual, and partly due to slower bleaching rates than for the IRSL (50 °C) signal.In this Arctic environment it appears that bleaching is limited in the first ∼100 m of meltwater transport from the glacier margin, but for material transported at least 3 km bleaching of OSL and IRSL (50 °C) signals is more or less complete. Given the very limited light penetration through the seawater in the bay, any bleaching must have occurred during fluvial/subaerial transport to the bay or by wave-reworking on the beach. Apart from the ice-proximal glacifluvial sediments, residual apparent doses recorded by quartz OSL and feldspar IRSL (50 °C) are negligible for the luminescence dating of Pleistocene-aged deposits of ice-distal, littoral and shallow-marine origin.  相似文献   

13.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

14.
This study aims to assess whether luminescence emission from fault gouge samples from the San Andreas Fault Observatory at Depth (SAFOD) can be used to determine the age distribution of distinct deformation microstructures. Such age determination could help constrain some of the proposed micromechanical models for shear localization in fault gouge, in addition to providing more accurate time constraint on the seismic cycle itself. The mechanism by which previously trapped charge is reset in minerals in fault gouge is thought to be a combination of frictional heating and mechanical deformation, and these processes may be localized to grain surfaces. An added dating complexity specific to deep samples is the high ambient temperature conditions, which act as a barrier to charge storage in lower energy trapping sites. In this work luminescence experiments are being conducted on minerals from whole-rock samples of intact fault gouge from the SAFOD Phase III core. Initial studies indicate (i) the thermal and radiation history of the mineral lattice can be assessed with TL, (ii) trap resetting is evident in both TL and IRSL data, (iii) a small charge-trapping window between drill hole ambient temperature of ∼112 °C and higher energy lattice excitation via rupture events is evident in TL data from ∼300 to 400 °C, and we tentatively link the source of IRSL to TL within this 300–400 °C region, (iv) IRSL data have low natural intensity but good luminescence characteristics, and (v) SAR IRSL De data have high over-dispersion but demonstrate ages ranging from decades to centuries may be measured.  相似文献   

15.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

16.
In this work we present luminescence analyses of material taken from a Neolithic hearth in the Sahara Desert in Egypt. The sample was taken from a beach sand layer which contained traces of charcoal. The sample was dated using quartz luminescence, and its luminescence properties were investigated to find whether it had been heated by fire. In doing so we established a procedure to distinguish heated and unheated quartz at single grain level.The OSL age estimate of the sample is 10.6 ± 0.4 ka. Luminescence properties were measured using about 40,000 individual grains. Using an approach similar to that used to measure thermal activation characteristics (TAC), we compared the distribution of OSL sensitivity of single grains following different thermal treatments. It was found that higher temperatures and longer treatment times change the sensitivity distributions systematically from that observed using the natural sample. We conclude that the grains examined in our dating study were not heated by fire prior to burial, and that the hearth is not older than the OSL age.  相似文献   

17.
Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics are satisfactory. The measured pIRIR290 De's do not vary significantly with IR stimulation temperatures between 50 °C and 260 °C; a first IR stimulation temperature of 200 °C was adopted. Dose recovery tests were performed by adding different laboratory doses to both laboratory bleached (300 h SOL2) samples and natural samples; the results are satisfactory up to ∼800 Gy. Resulting quartz OSL and feldspar pIRIR290 ages are in good agreement at least back to ∼44 ka; beyond this feldspar pIRIR290 ages are older. The feldspar ages are consistent with the expected age of the S1 palaeosol (MIS 5). There appears to have been a period of fast loess deposition at ∼62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China.  相似文献   

18.
The Qujialing site is a representative Neolithic archaeological site in the middle reaches of the Yangtze River, China. Absence of suitable material for radiocarbon dating in this region makes the timing of the similar sites difficult. Here we applied optically stimulated luminescence (OSL–SAR) and thermoluminescence (TL–SAR) techniques to date the archaeological and natural deposits from the Qujialing site with known age, testing the techniques on samples at archaeological sites in this region. The results showed that the luminescence properties of quartz from sediment and baked earth samples are very similar. The quartz OSL ages obtained for a sediment sample and a baked earth sample from the cultural layer are 5.4 ± 0.3 and 5.1 ± 0.3 ka, respectively. The quartz TL age of the baked earth sample is 5.6 ± 0.5 ka. These dates are consistent with the calibrated radiocarbon ages (4.9 ± 0.1 and 5.1 ± 0.1 ka cal BP (±1σ)) of the two charcoal samples from the cultural layer at a nearby locality, and are also in agreement with the age of Qujialing culture period. The results indicate that the OSL dating techniques can be applied to date similar archaeological sites in the middle reaches of the Yangtze River, China.  相似文献   

19.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

20.
The paleogeography of Amazonia lowlands during the Pleistocene remains hampered by the lack of reliable absolute ages to constrain sediment deposition in the hundred thousand to few million years timescales. Optically stimulated luminescence (OSL) dating applied to quartz has provided important chronological control for late Quaternary sediments, but the method is limited to the last ∼150 ka. In order to extend the age range of luminescence dating, new signals from quartz have been investigated. This study tested the application of isothermal thermoluminescence (ITL) and thermally transferred optically stimulated luminescence (TT-OSL) signals of quartz for dating of fluvial terraces from eastern Amazonia. ITL and TT-OSL signals measured in a modern fluvial sediment sample have shown small residual doses (4 and 16 Gy), suggesting adequate bleached sediments for the target dose range (>150 Gy). This sample responded well to dose recovery test, which showed that the ITL and TT-OSL signals grow to higher doses compared to the doses estimated by the conventional OSL signal. The ITL signal saturated for doses significantly lower than doses reported in the literature. Most dating samples were beyond the ITL saturation doses and only TT-OSL signals were suitable to estimate equivalent doses. Burial ages ranging from 107 to 340 ka were estimated for the fluvial terraces in the lower Xingu River. The main ages uncertainties are related to dose rate changes through time. Despite the uncertainties, these ages should indicate a higher channel base level during the Middle Pleistocene followed by channel incision, possibly due to episodes of increased precipitation in the Xingu watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号