首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Debris flows in the mountainous regions south west of Beijing, China occur frequently and often result in considerable mass movements with disastrous consequences for human life, infrastructure and agriculture. Obtaining chronological information on such events is important for the prediction of the return frequency of these debris flows, risk assessment and climate change research. In this project, we use quartz single-grain optically stimulated luminescence (OSL) methods to determine the burial ages of five debris flow samples from the Zhai Tang region ∼60 km west of Beijing. OSL characteristics were found to be acceptable despite the low inherent brightness of quartz extracted from these samples. Single-grain thermal transfer was determined to be negligible and beta dose recovery experiments were satisfactory. The quartz single-grain dose distributions strongly indicate that the samples were poorly bleached prior to deposition; relative over-dispersions are larger than 60%. Minimum age modelling indicates that all five samples were deposited within the past few hundred years, indicating that catastrophic debris flows are occurring under the historically-recent land-use pattern.  相似文献   

2.
The 2011 Tohoku-oki tsunami caused large-scale topographic changes along the Pacific coast of northeastern Japan. More than 10 years have passed since the tsunami waves struck the area. Today, because of reconstruction work, very few places exist where natural post-tsunami topographic changes can be monitored continuously. For this study, the authors investigated topographic changes caused not only by the 2011 tsunami but also by natural and artificial activities during the 50 years before and after the tsunami based on aerial photographs, excavations and subsurface explorations using ground-penetrating radar at the Osuka coast in Aomori prefecture, Japan. The site is rare because it is a protected area with few and superficial engineering activities, making it suitable for continuous observation of pre-tsunami, syn-tsunami and post-tsunami topographic changes. The findings indicate that the 2011 tsunami waves generated large topographic changes: depositional and erosional features produced by the tsunami can be recognized, respectively, as tsunami deposits and erosional channels across the sand dunes. During the post-tsunami phase, the sand volume at the coast quickly recovered naturally. Tsunami deposits and the erosional channels were well preserved underground even at 10 years after the event. However, dynamic movement of the dunes started after the tsunami. The shifting was attributable to the artificial clearing of coastal forests rather than the tsunami effects on the coast. Our results first indicate not only that the sedimentary features of paleo-tsunamis but also the erosional features have some probability of being preserved in the subsurface of the beach and sand dunes at tsunami-affected areas. Also, artificial activities such as deforestation are much more crucially undermining of the stability of the coastal geomorphology than the tsunami effects: the coast is now reaching a different status from its pre-tsunami situation.  相似文献   

3.
OSL dating of paleoshorelines at Lagkor Tso, western Tibet   总被引:1,自引:0,他引:1  
Lagkor Tso, a saline lake located south of Gertse in western Tibet exhibits spectacular flights of paleoshorelines. Optically stimulated luminescence (OSL) dating on quartz using the single-aliquot regenerative-dose (SAR) protocol from five paleoshoreline deposits shows that the lake level was 130 m higher than the present lake surface 5.2 ka ago. The lake level dropped rapidly by 25 m between 5.2 ka and 3.7 ka ago. Lake shrinkage further accelerated between 3.7 ka and 3.2 ka ago, when the lake level was just 74 m above the present lake surface. Luminescence characteristics and problematic samples are discussed.  相似文献   

4.
Abstract A tsunamigenic sand layer is present in coastal sequences of the Masuda Plain, southwest Japan. The radiometric age of the layer has been estimated at 930 ± 80 years BP. It is proposed that the deposit is the product of a large historic tsunami believed to have occurred in the Japan Sea on 16 June 1026 AD.  相似文献   

5.
The timing of glacial advances, periglacial phenomena, and the ages of two marker tephras in northern Hokkaido were estimated by OSL dating. It appears that the glacier of Yamunai 2 stage on Rishiri Island expanded between 24 and 15 ka. In northern Hokkaido, OSL ages indicate ice wedge formation during the period 24–18 ka. These results indicate that both the glacial advance and the development of ice wedges were synchronous phenomena relating to the Last Glacial Maximum.  相似文献   

6.
Dates of tsunami deposits have been used to estimate paleotsunami recurrence intervals in areas affected by these natural events. The depositional age of tsunami deposits is commonly constrained by the radiocarbon (14C) dating of sediments above and below the geological event. However, because of calibration curve fluctuations, the depositional age sometimes has a wide error range. In this study, we conducted millimeter-scale high-resolution radiocarbon measurements of tsunami deposits at Urahoro in southern Hokkaido, Japan. The site faces the Pacific Ocean along the Kuril Trench. Eight event deposits were identified within peat at this site. We took sequential measurements for 14C dating using bulk peat samples. The results were validated based on comparison with the absolute and radiometric ages of tephra layers. Dating results were further constrained by stratigraphic order using statistical methods. We constrained the depositional age of the paleotsunami deposits better using this method than we did when using conventional methods. We proposed an efficient measurement strategy with respect to the radiocarbon calibration curve. This method is also applicable for other deposits formed by any natural hazard if bulk peat is obtainable so it can contribute to better hazard assessment worldwide.  相似文献   

7.
Optically stimulated luminescence (OSL) dating was applied to glacial and loess deposits in the north flank of the Terskey-Alatoo Range, Kyrgyz Republic, to elucidate the glacier chronology of the central Asian mountains during the Last Glacial. Moraines in five parts of study area were classified into four stages (Terskey Stages I–IV) based on their geographical position and elevation, and their moraine rock weathering. According to this classification, the oldest moraines (Terskey Stage I) were at 2100–2250 m a.s.l. and the second-oldest moraines (Terskey Stage II) were at 2400–2700 m a.s.l. Quartz samples from moraines of these two stages were used for OSL dating. The OSL ages of the quartz samples indicate that glacier expansion in the Terskey Stage II occurred between 21 and 29 ka BP.  相似文献   

8.
Little work has been undertaken on combined dating of sedimentary quartz grains using electron spin resonance (ESR) and optically stimulated luminescence (OSL) techniques in Australia. This study aims to assess the suitability of a combined ESR and OSL dating approach for establishing improved chronologies of Middle-Late Pleistocene deposits within the Naracoorte Cave Complex (NCC), South Australia. Here, we apply ESR and OSL dating in tandem to a series of samples collected from three different NCC sites: Whale Bone, Specimen and Alexandra cave. ESR quartz dating focuses on the multi-centre (MC) approach, which involves comparative evaluations of Al and Ti centre signals, while paired luminescence dating focuses on single-grain OSL analysis and includes examination of multi-grain averaging effects. The comparative ESR-OSL dating results exhibit broad agreement for deposits spanning 50–150 thousand years, with either the Ti–H or Al centre ages overlapping with paired OSL ages at 2σ in nearly all cases. MC ESR evaluations (Al v Ti–Li v Ti–H age assessments) indicate incomplete resetting of the bleachable Al centre signal for a small number of samples. Two-thirds of samples exhibit Ti–Li ages that are significantly older than corresponding Al centre ages, which is unexpected from a bleaching kinetics perspective and may indicate a broader reliability issue for Ti–Li palaeodose evaluation with these particular samples. Our findings: (i) support the applicability of both palaeodosimetric dating methods in this depositional setting; (ii) highlight the merits of applying combined ESR-OSL analyses in tandem, and; (iii) provide one of the first reliable evaluations of quartz ESR MC dating for samples with natural dose ranges as low as only a few tens of Gy. These results show that the Whale Bone, Specimen and Alexandra cave sites are temporally related and can be used to derive multi-site reconstructions of faunal assemblages and palaeoenvironmental history.  相似文献   

9.
Quartz optically stimulated luminescence (OSL) forms the basis for the chronology of Weichselian ice advances in Arctic Eurasia developed over the last few years. There is almost no age control on this chronology before 40 ka, except for some marine sediments correlated with marine isotope stage (MIS) 5e on the basis of their palaeofauna. Results from more southern latitudes have shown that dose estimates based on quartz OSL and the single aliquot regenerative (SAR) dose procedure may underestimate the age of MIS 5e deposits. Here we use the same method to date well-described marine sediments, thought to have been deposited during the very beginning of the Eemian interglacial at 130 ka, and exposed in two sections on the river Sula in northern Russia. Various quality-control checks are used to show that the OSL behaviour is satisfactory; the mean of 16 ages is 112±2 ka (σ=9 ka). This represents an underestimate of 14% compared to the expected age, a discrepancy similar to that reported elsewhere. In contrast to SAR, the single aliquot regeneration and added (SARA) dose procedure corrects for any change in sensitivity during the first OSL measurement. The SARA results are shown to be 10% older than those from SAR, confirming the geological age estimate and suggesting that SAR ages may underestimate older ages (larger doses), despite their good performance in the younger age range.  相似文献   

10.
Rapid sample preparation and measurement protocols for optically stimulated luminescence (OSL) dating have been investigated as a method of increasing the throughput of samples (e.g. Roberts et al. 2009). Here, we investigate the potential of dating samples treated using only hydrochloric acid (HCl) for providing accurate range-finder ages for quartz. The equivalent dose (De) is underestimated for older samples using a standard single-aliquot regenerative-dose (SAR) protocol, but measurement of the post-IR OSL signal (e.g. Roberts and Wintle, 2003) provides De estimates within 15% of the ‘target fully prepared De’ for two-thirds of samples. The application of a standardised growth curve (SGC) is also investigated. For these dune samples, the most efficient preparation and measurement procedure from which accurate De estimates can be obtained is treatment with HCl-only, measurement of the natural and regenerative post-IR OSL signal, and calculation using a region-independent SGC. A slightly longer protocol incorporating an additional preparation stage of heavy liquid density separation can be used to improve De estimates in samples where feldspar-contamination is thought to be particularly problematic. In practice, these time savings of days to weeks in the preparation and measurement protocols mean that a large number of samples can first be rapidly treated with HCl, the post-IR blue OSL signal measured using a shortened double-SAR protocol, and De calculated by applying an independent SGC before then deciding which samples require full preparation and measurement, rather than the inefficiency of committing time and resources to all samples if this is unnecessary for the context of a particular suite of samples. The potential of this rapid preparation and measurement protocol is discussed in relation to sand dune dating studies.  相似文献   

11.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   

12.
Extreme seasonal summer rain storms are common in the mountains to the north east of Beijing and these often result in mass movement of sediment slurries transported for up to a few km. These debris flows can be deadly and are very destructive to infrastructure and agriculture. This project tests the application of luminescence dating to determining the return frequency of such extreme events. The high sediment concentration and the very short flow duration gives very little opportunity for daylight resetting during transport and only a small fraction of the total mass is likely to be reset before transport begins. Here we examine the quartz single-grain dose distribution from a recent known-age (<25 years) debris flow from a small (∼3.9 km2) catchment ∼140 km north of Beijing and compare it with those from three samples from a sedimentary sequence containing the evidence of multiple flow events.Multi-grain quartz OSL signals are dominated by the fast component and <1% of the 150–200 μm grains give a detectable test dose (4.5 Gy) response. Single-grain beta dose recovery gave a ratio of 0.97 ± 0.06 (n = 30) with an over-dispersion of 23 ± 8% (CAM). Both the recent known age and the palaeo-distributions are highly dispersed with over-dispersions greater than 50%. The average weighted doses range between ∼3 mGy and ∼6.5 Gy, indicating that all deposits are no more than a few thousand years. Minimum age modelling give an age estimate for the youngest sample consistent with the known age, and minimum ages for the older palaeo-deposits suggest that there have been at least 3 major debris flows in this small catchment in the last 1000 years.  相似文献   

13.
Quartz optically stimulated luminescence (OSL) dating has been applied to sandy beach ridge systems from the Magdalen Islands in the center of the Gulf of St. Lawrence (Quebec, Canada) to provide the first chronological framework for these features. Nineteen beach ridges (22 samples) from four different sites throughout the archipelago were investigated. At one of the sites, samples were taken at 9 m and 7.5 m depth using a vibracore. The quartz is dominated by the fast OSL component and a single-aliquot regenerative-dose (SAR) protocol was used to measure the equivalent doses; a low preheat (180°C/10 s) was chosen to avoid the influence of thermal transfer. The average dose recovery ratio of all samples is 1.02 ± 0.02 (n = 130) suggesting that the SAR protocol works satisfactorily on this material. The OSL ages are internally consistent and supported by independent age control (radiocarbon). The OSL ages indicate that the ridges were built between 2.6 ± 0.2 ka and 0.40 ± 0.10 ka, i.e. during a period of sea level rise. This rise eroded adjacent sandstone cliffs, which contributed a significant sediment supply to the littoral drift and beaches. Some low-lying coasts in the archipelago are still prograding, despite a relative sea level increase of ∼1.6 mm/a over the last 600 years. The late Holocene ages obtained in this study indicate that these processes have been active for at least the past two thousand years. This study demonstrates for the first time that OSL dating using quartz has great potential in this area, and is an appropriate method for establishing precise chronologies for coastal sediments in this region of the Gulf of St. Lawrence.  相似文献   

14.
Many lakes in the Tibetan Plateau (TP) experienced dramatic lake level changes in the late Quaternary, as suggested by well-preserved paleo-shorelines up to ∼200 m above present lake levels. These relic shorelines provide direct geomorphic record to reconstruct past lake level fluctuation history and water volume changes, linked closely to variations in paleo-climatic controls including Asian monsoon, westerlies and glacial meltwater. In this study, 27 near-shore sediment samples from three of eight paleo-shorelines at north of Nam Co were dated by Optically Stimulated Luminescence (OSL) technique, using coarse grains of quartz and potassium feldspar.Our results indicate that: 1) S1 is the highest/most developed shoreline (+26 m). Sediment from upper part of S1 has a consistent age of ∼25 ka (nine samples from 3 gullies), suggesting a high lake level of Nam Co occurred around 25 ka. An overflow point west of Nam Co has a close elevation to that of S1 and thus limits the presence of higher lake levels; 2) sediment profile from the slightly lower S2 (+22 m) contains two parts, silty sand (6.9–8.9 ka) at the bottom and shoreline deposits atop (∼2.3 ka), suggesting Nam Co maintained a relative high lake level in the early Holocene and such lake level occurred again at about 3.0–2.0 ka; 3) In contrast to the swift variations of monsoon precipitation and glacial meltwater in the late Quaternary, water level of Nam Co remained relatively stable during the period from ∼25 ka to about early Holocene (from +26 m to +22 m), implying a continuous outflowing stage and lake infill constantly exceeds evaporation; 4) S5 (+11 m) has an age of 0.7–1.4 ka. Nam Co showed a much accelerated pace of shrinkage since about 2.0 ka in the late Holocene in roughly two steps: it dropped from +22 m to +11 m from ∼2.0 ka to 1.4 ka, and subsequently dropped another 11 m after 0.7 ka.  相似文献   

15.
Optically stimulated luminescence (OSL) dating is increasingly used to estimate the age of fluvial deposits. A significant limitation, however, has been that conventional techniques of sampling and dose rate estimation are suitable only for thick (>60 cm) layers consisting of sand size or finer grains. Application of OSL dating to deposits lacking such layers remains a significant challenge. Alluvial fans along the western front of the Lost River Range in east-central Idaho, USA are one example. Deposits are typically pebble to cobble sheetflood gravels with a sandy matrix but thin to absent sand lenses. As a result, the majority of samples for this project were collected by excavating matrix material from gravelly deposits under light-safe tarps or at night. To examine the contributions of different grain-size fractions to calculated dose-rates, multiple grain-size fractions were analyzed using ICP–MS, high resolution gamma spectrometry and XRF. Dose rates from bulk sediment samples were 0.4–40% (mean of 18%) lower than dose-rate estimates from the sand-size fractions alone, illustrating the importance of representative sampling for dose rate determination. We attribute the difference to the low dose-rate contribution from radio-nuclide poor carbonate pebbles and cobbles that occur disproportionately in clast sizes larger than sand. Where possible, dose rates were based on bulk sediment samples since they integrate the dose-rate contribution from all grain sizes. Equivalent dose distributions showed little evidence for partial bleaching. However, many samples had significant kurtosis and/or overdispersion, possibly due to grain-size related microdosimetry effects, accumulation of pedogenic carbonate or post-depositional sediment mixing. Our OSL age estimates range from 4 to 120 ka, preserve stratigraphic and geomorphic order, and show good agreement with independent ages from tephra correlation and U-series dating of pedogenic carbonate. Furthermore, multiple samples from the same deposit produced ages in good agreement. This study demonstrates that with modified sampling methods and careful consideration of the dose rate, OSL dating can be successfully applied to coarse-grained deposits of climatic and tectonic significance that may be difficult to date by other methods.  相似文献   

16.
The Bohai Sea is a semi-enclosed continental shelf sea in northern China. Three transgression layers have been identified from the Late Quaternary strata in the western Bohai Sea and the coastal regions, which provide critical information on Late Quaternary sea-level fluctuations and landscape development. The three transgression layers were previously assigned to Marine Isotope Stage (MIS) 1 (transgression 1, T1), MIS 3 (T2) and MIS 5 (T3), respectively, mainly based on 14C dating. However, this chronological framework aroused an enigma that the regional sea level in MIS 3 was even higher than that of MIS 5, conflicting with the context of global sea-level pattern. In order to clarify this issue, here quartz optically stimulated luminescence (OSL) dating (four samples) was used to constrain the T2 chronology of borehole TJC-1 from the western Bohai Sea. Radiocarbon samples (eight) of peaty sediments were also measured for reference and comparison. All the four OSL samples showed saturation ages of >80 ka, suggesting that the T2 layer should have formed at least in MIS 5, instead of in MIS 3. Radiocarbon ages in T2 should have been severely underestimated, with a saturation age range of 22–30 cal ka BP, similar to all the previous published radiocarbon ages. The renewed OSL chronological framework for Late Quaternary transgressions in the western Bohai Sea is in better compliance with the history of global sea-level change.  相似文献   

17.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

18.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

19.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号