首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Potential use of Ti-center in ESR dating of fluvial sediment   总被引:1,自引:0,他引:1  
The titanium centers of quartz (Ti–Li and Ti–H) were used to date fluvial sediments, together with the aluminum-center (Al). The response of these centers to the light from a solar simulator suggests that these centers are sensitive only to the UV component of the sunlight. Ti–Li and Ti–H proved to be totally bleachable by the sun and the necessary time was, respectively, 520 and 240 h. The multiple-center method was then applied on several alluvial sediments of the Creuse Valley (France). Equivalent doses and ages were calculated and Ti–Li center proved to be suitable for dating Middle Pleistocene fluvial terraces sediment. The use of both Ti–Li- and Al-centers is also recommended to determine if the sediment was well bleached at the time of deposition.  相似文献   

2.
An ESR experimental study of artificial optical bleaching of sedimentary quartz has shown that the aluminum center was maximally bleached after a 6-month illumination equivalent to natural light. This duration seems too long to apply in natural conditions. Nevertheless, the measurement of the ESR intensity of aluminum centers in quartz extracted from modern sediments and deposited in sandy bars shows that the maximum bleaching has effectively been reached.

In order to determine the relationship between the bleaching and the distance covered by a quartz grain in a river, samples were collected along the Creuse River (France) from its spring to about 170 km downstream, where maximum bleaching levels were observed in previous studies. The ESR intensities of the aluminum and titanium centers in quartz were measured, using X-band spectroscopy, before and after artificial bleaching. The difference measured between these sub-samples shows that the maximum bleaching level is obtained in the course of the first kilometer. Hence, the assumption that ESR dating of fluvial sediment is based on the optical bleaching was validated.  相似文献   


3.
The quartz Al centre has been used in pioneering studies for ESR dating of sediments. Acceptable age estimates could be obtained for a range of deposits using this centre after estimating the residual level. To inspect the feasibility and reliability of ESR dating of windblown sediments, six loess samples from the loess–paleosol sequences of Luochuan profile on central Loess Plateau, China, were dated by ESR with regeneration method using the quartz Al centre measured at 115 K. The samples were exposed to sunlight for 430 h. Only about 25% signal intensity was bleached. According to our preliminary results, ESR age estimates increased with the depth along the loess profile, however, the ESR age of each sample is only about a half of the reference age of the corresponding strata. For example, the ESR age of a sample from the top of L8 loess near B/M boundary (a known age of 780 ka) yields an age of only 385 ka. It seems that ESR dating using quartz Al centre with dose regeneration protocol may have the potential for dating of loess and other aeolian deposits, but the studies on the nature of the quartz Al centre and experiment protocols have to be studied further.  相似文献   

4.
Luminescence and ESR dating methods of quartz sediment are based on the natural resetting of the signal by light exposure (optical bleaching). When the bleaching is incomplete, a residual dose (DeR) is added to the post-depositional dose accumulated since the deposit and hence the age is overestimated.Insufficient bleaching is usually linked to the environment and conditions of transport/deposition of the quartz grains affecting the light exposure duration. Indeed, each transportation mode – fluvial, marine or aeolian – is associated to specific conditions of light exposure, depending mainly to the location of grains in the transport agent during the transport phase, the opacity of the transport environment and the velocity of the transport.The present study attempts to discriminate the modes of transport/deposition providing a satisfying reset of the ESR signals of quartz grains. For this purpose, we investigated bleaching rates and ESR residual doses of aluminum centers from “present-day” aeolian, fluvial and marine sediments sampled in various sedimentary environments. The bleaching efficiency evaluation in these different environments may help for a better understanding of the resetting phenomenon for quartz signals which represents presently the main difficulty for ESR dating.The results show that the residual doses are small enough to allow an ESR dating of the main part of the sediment transported in almost all the context examined in this study. The smallest residual doses are obtained from quartz grains within the range of 100–200 μm and transported in clear water. Some limits for the application of optically bleached quartz ESR dating appears nevertheless, mainly when the residual dose and the dose accumulated after the deposit are quite similar, i.e. for Upper Pleistocene samples.  相似文献   

5.
When electron spin resonance (ESR) is applied to sedimentary quartz, dealing with the poor bleachability of the signals is particularly challenging. In this study, we used both the single-grain optically stimulated luminescence (OSL) and the single aliquot ESR dating of quartz from deep sand deposits preserving a Stone Age archaeological sequence to combine the advantages of the two methods: good bleaching behaviour and extended age range. Using the youngest samples at each sampling site we were able to calculate the mean ESR residual age from the difference between the OSL ages and the apparent ESR ages. Focusing mainly on the single aliquot regenerative dose (SAR) protocol here, we were able to calculate the mean ESR residual age for the Ti and Al centres, including the non-bleachable signal component for the latter. For the NP site, residual ages of 209 ± 13 ka and 695 ± 23 ka were calculated for the two centres, whereas for the ZS site 268 ± 39 ka and 742 ± 118 ka were determined. These residual ages are significant and cannot be neglected. Thus, the residual age was subtracted from the apparent ESR ages. The validity of the residual subtraction method was tested through a comparison of the oldest OSL age from each site with the residual subtracted ESR age. For both NP and ZS sites, the residual subtracted Ti and Al ages were consistent with the OSL age within 2-σ uncertainty, and therefore confirm the robustness of the subtraction method. Within the NP sequence, we were able to locate the end of the Early Stone Age at 590 ± 86 ka, and this provides a maximum age for the transition to the Middle Stone Age in this part of south-central Africa.  相似文献   

6.
Quartz optically stimulated luminescence (OSL) dating is widely used to determine the time of deposition and burial of Late Quaternary sediments. Application of the method is usually limited to the past 150,000 years due to early saturation of the OSL signal. Here we explore the potential to date Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz. We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10 °C, and that this trap is bleachable by sunlight. The VSL signal grows with dose to ∼6400 Gy, a factor ∼20 higher than the conventional quartz OSL signal, and with the proposed protocol we recover a known dose of 1000 Gy in three out of four samples. The potential of the VSL protocol for dating Quaternary sediments is highlighted by its successful application to a suite of geological samples ranging in age between 13 and 330 ka. Based on our investigations, we propose that the VSL protocol has the potential to extend the quartz dating range to cover the full Quaternary.  相似文献   

7.
Usually, multiple-grain aliquots are used for electron spin resonance (ESR) dating of sediments. However, this approach excludes the ability of detecting insufficient bleaching, as would be the case when measuring several single aliquots or single grains. In this paper, we present preliminary results of single-grain ESR dating experiments on three different sedimentary deposits (fluvial, fluvio-aeolian and desert aeolian), ranging in age between 100 ka and 2 Ma. Titanium-related impurity centres (Ti–Li and Ti–H) were measured in a Q-band ESR spectrometer for estimating equivalent doses (De) of individual quartz grains (0.5–1 mm). Both additive and regenerative dose methods were used. The resulting De plots show a large scatter in De—from 100 Gy to more than 600 Gy—for the fluvial sample, probably reflecting different bleaching histories of the grains. On the contrary, a clear plateau can be observed in De for sands with a strong aeolian component. Preliminary single-grain ESR ages are in relatively good agreement with independent estimates, the best results being obtained for the desert aeolian sample (200 ka). It is concluded that ESR has a promising potential for estimating large naturally accumulated doses of well-bleached sediments. Nevertheless, the method is challenged by several experimental difficulties, such as long measurement times, excessive errors, and presumably a complex interrelationship between Ti–Li and Ti–H components.  相似文献   

8.
Little work has been undertaken on combined dating of sedimentary quartz grains using electron spin resonance (ESR) and optically stimulated luminescence (OSL) techniques in Australia. This study aims to assess the suitability of a combined ESR and OSL dating approach for establishing improved chronologies of Middle-Late Pleistocene deposits within the Naracoorte Cave Complex (NCC), South Australia. Here, we apply ESR and OSL dating in tandem to a series of samples collected from three different NCC sites: Whale Bone, Specimen and Alexandra cave. ESR quartz dating focuses on the multi-centre (MC) approach, which involves comparative evaluations of Al and Ti centre signals, while paired luminescence dating focuses on single-grain OSL analysis and includes examination of multi-grain averaging effects. The comparative ESR-OSL dating results exhibit broad agreement for deposits spanning 50–150 thousand years, with either the Ti–H or Al centre ages overlapping with paired OSL ages at 2σ in nearly all cases. MC ESR evaluations (Al v Ti–Li v Ti–H age assessments) indicate incomplete resetting of the bleachable Al centre signal for a small number of samples. Two-thirds of samples exhibit Ti–Li ages that are significantly older than corresponding Al centre ages, which is unexpected from a bleaching kinetics perspective and may indicate a broader reliability issue for Ti–Li palaeodose evaluation with these particular samples. Our findings: (i) support the applicability of both palaeodosimetric dating methods in this depositional setting; (ii) highlight the merits of applying combined ESR-OSL analyses in tandem, and; (iii) provide one of the first reliable evaluations of quartz ESR MC dating for samples with natural dose ranges as low as only a few tens of Gy. These results show that the Whale Bone, Specimen and Alexandra cave sites are temporally related and can be used to derive multi-site reconstructions of faunal assemblages and palaeoenvironmental history.  相似文献   

9.
Five Plio-Pleistocene to Holocene aeolian quartz samples from the coastal dune deposits of the Wilderness-Knysna area (South Africa) previously dated by OSL were selected for ESR dating. Samples were processed following the Multiple Centre approach and using the Multiple Aliquot Additive dose method. Aluminium (Al) and Titanium (Ti) signals were systematically measured in all samples.Our study shows that ESR results obtained for Middle Pleistocene to Holocene samples may be strongly impacted by (i) the presence of a significant high frequency noise in the ESR spectra acquired for the Ti signals and (ii) the choice of the fitting function employed. In particular, if not taken into account, very noisy spectra can lead to a significant overestimation of the true ESR intensity measured for the Ti–H signal. These sources of uncertainty are however not sufficient to remove the ESR age overestimations. Consequently, our results indicate that the Al and Ti ESR signals of these quartz samples have not been fully reset during their aeolian transport.While this work contributes to improve our understanding of the ESR method applied to quartz grains, and especially of the potential and limitations of the Ti signals, it also provides additional baseline data to illustrate the existing variability among quartz samples of different origins or sedimentary context. Our results are consistent with previous studies by confirming that the Ti–H signal shows the best potential for the evaluation of low dose values (<100 Gy for these samples), whereas it becomes inappropriate for the higher dose range, and the Ti–Li–H (option D sensu Duval and Guilarte, 2015) should be used instead.Beyond the methodological outcome, this ESR dating study also provides a useful addition to the existing chronology of the aeolian deposits in this region. In particular, new (and possibly) finite numerical age results were obtained for the two oldest samples, constraining the aeolianite landward barrier dune and the coversand formations to the MIS 10-8 and Pliocene, respectively.  相似文献   

10.
Natural and laboratory ESR dose response curves (DRCs) of [AlO4/h]0 and [TiO4/M+]0 were investigated for samples of quartz from the Luochuan loess-palaeosol master section, Chinese Loess Plateau. The natural and laboratory DRCs show a clear divergence above ∼1000 Gy, with much lower D0 values and saturation levels observed for the natural DRCs, which is in agreement with the previous study by Tsukamoto et al. (2018). Young (<15 ka) samples from Luochuan and Jingbian – another site of the Chinese Loess Plateau, together with two modern samples of Chinese loess, were used to investigate the residual signals of [AlO4/h]0 and [TiO4/M+]0 centres. Our results are in line with published studies and show that the significant residual signals corresponding to several tens to hundreds of Gy are present in both Al and Ti centres. These need to be taken into account before laboratory DRC construction. ESR pulse annealing experiments performed on samples irradiated with different doses show an apparent dose-dependent thermal instability of [AlO4/h]0 and [TiO4/M+]0, with the signals for higher doses decaying faster with increasing temperature. We attribute the change in D0 with preheat reported in Tsukamoto et al.2018, as well as the difference between laboratory and natural DRCs, to this apparent dose-dependent thermal instability of the signals. The saturation level of the natural DRC, being the result of reaching the equilibrium between filling of the traps and emptying them due to thermal decay, is therefore additionally affected at higher doses, due to the increased thermal instability. The inability to recreate in the laboratory the same response to irradiation as the one observed in nature questions the accuracy of dating samples beyond ∼1000 Gy.  相似文献   

11.
The finding of Upper Paleolithic engravings in 2016 triggered a multidisciplinary investigation of the Alkerdi cave system (Urdazubi, N Spain). The study of the speleogenetic processes led to the identification of at least 6 paragenetic cave levels with associated sedimentary infill. In order to unravel the timing of changes in the karst dynamics and to get some insights about sediment origin, two sediment samples were collected from cave levels 4 and 1 for numerical dating purpose, using both Optically Stimulated Luminescence (OSL) and Electron Spin Resonance (ESR) methods. One additional modern-age sample was also taken from the entrance of the karst to evaluate the magnitude of the optical bleaching achieved by the quartz grains before entering the cave system. Last, one sample was collected from a flowstone for U-series dating, providing independent age control.OSL measurements were carried out using small quartz multi-grain (MG) and single-grain (SG) Single Aliquot Regenerative-dose (SAR) protocol. Initial Equivalent Dose (De) results show evidence of saturated OSL signal for the sample of the higher level (with ∼60% of saturated aliquots). Unlike SA data, SG analyses do not meet the usual quality criteria (e.g., relatively high recuperation ratios, only a few grains with useable signal), suggesting that corresponding dating results should be treated with caution.Hence, both MG and SG TT-OSL and MG ESR methods were subsequently employed, as the corresponding signals are known to have higher saturation levels than OSL ones. ESR analyses were based on the Multiple Centre (MC) approach using the standard multi-grain multi-aliquot additive (MAA) dose method, while TT-OSL measurements were performed following Demuro et al. (2020). The latter, however, did not return any useful results for both samples. MC ESR data show the usual De pattern (De(Al)>De(Ti op. D)>De(Ti–H)) indicating that among the three ESR signals analyzed, the Ti–H most likely provides the closest estimate to the true burial age. However, low measurement repeatability and goodness-of-of fit indicate that the reliability of the ESR results may be reasonably questioned.Results derived from this multi-technique dating approach provide the first chronological constraints for the sedimentary infill of the Alkerdi cave system. In particular, they suggest that sediment deposition in Cave Level 4 (ALK-OSL01) occurred around 130 ka, which is in good agreement with the minimum age constraint given by the speleothem (80.5 ± 9.0 ka). In comparison, the young age obtained for sample ALK-OSL02 (5.0 ± 0.9 ka) suggests recent Holocene formation of the lowest cave level 1.Finally, the MG De value obtained for the modern sample is close to zero (<1 Gy), indicating that the OSL signal is almost fully reset at a multi-grain level before entering the cave. Additionally, despite the large De overdispersion measured in this modern sample, the De values are one to two order of magnitude lower than those obtained with the same model in the other two samples. Therefore, the large OSL De overdispersion (OD) values of up to 64% obtained for the two samples from Cave Level 4 and 1 are most likely related to re-sedimentation processes inside the cave system.  相似文献   

12.
The electron spin resonance (ESR) dating of tills using germanium-doped (Ge) paramagnetic centers in quartz has advantages over other dating techniques, as quartz is common, processing is easy, and the technique has the potential for dating features several hundreds of thousands years old. ESR dating of moraines is based on the supposition that either subglacial comminution or exposure to sunlight resets the signal. However, actual dating suggests that a signal that is initially present cannot be bleached to zero by grinding alone. We found that grinding coarse samples (0.5–1 mm in diameter) to the mean grain size of fine sand (0.125–0.193 mm) reduced the signal intensity to 53–69% of its original value. From the value of the signal difference, one can devise a correction factor for ESR ages of subglacial sediment. Polymineralic grains are commonly present in till. Exposure of them to sunlight for several days can reduce the signal intensity to 7–8% of its original value within 1–2 mm thick of the sediment surface. However, within 5–8 mm of the sediment surface, exposure to sunlight for over one week only reduced the signal intensity to mean plateau values of 42–50% of the initial value. Mixing upper and lower layers of the samples during exposure to sunlight changed the signal intensity. This suggests that the amount of bleaching varies spatially. Sediments initially deposited at the margins of ice caps or ice sheets and subsequently overridden may have been sufficiently exposed to sunlight to allow ESR dating of moraines. The purity of the quartz and the grain size have significant impacts on signal intensity; intensive purification and the use of a uniform fine sand fraction are thus recommended.  相似文献   

13.
Multiple-centres electron spin resonance (MC-ESR) dating of quartz grains has been commonly applied to fluvial and lacustrine deposits and can provide a precise chronological framework for depositional histories. However, the reliability of this method for quartz grains obtained from sediments of boreholes, which are usually deposited continuously and record information regarding basin evolution and climate change, has not yet been assessed. In this study, we have initially applied the MC-ESR dating method to borehole sediments from the Zhoulao core (ZLC), located in the depocenter of the Jianghan Basin, middle Yangtze River, China. Dating of quartz grains from the ZLC using MC-ESR yields estimated ages that are generally consistent with the established paleomagnetic chronological framework. For Middle Pleistocene samples (i.e., 0.7–0.3 Ma), the Ti–Li centre provides more accurate ages than those of Al centre, which are overestimated. For Early Pleistocene samples (i.e., 2.3–0.8 Ma), both the Al centre and Ti–Li centre give highly consistent estimate ages, indicating that this is a favorable dating range for MC-ESR. Overall, the Al centre shows promise for dating Pliocene samples, whereas the Ti–Li centre is more suitable for Middle-Early Pleistocene (2.3–0.3 Ma) sediments. In addition, the deposition rate of depth <170 m in the ZLC is greater than those of depth >170 m sediments; however, the specific tectonic, climatic, or geomorphic mechanism for this change in sedimentation rate is still unclear.  相似文献   

14.
Electron spin resonance (ESR) dating on teeth has been used to determine the antiquity of the human presence in the area of Gunung Sewu (East Java, Indonesia). The Song Terus cave is one of the archaeological sites located in this area, which has yielded an important collection of fossil bones and prehistoric lithic industry. ESR dating shows that this cave belongs to a karstic system which has been in place since Middle Pleistocene. The results of coupled ESR/Uranium-series dating indicates closed system for uranium in tooth tissues yielding ages of between 216 and 392 ka for the oldest archaeological levels, confirming the possibility of finding Middle Pleistocene human occupations in such karstic sites in Java.  相似文献   

15.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

16.
Extreme seasonal summer rain storms are common in the mountains to the north east of Beijing and these often result in mass movement of sediment slurries transported for up to a few km. These debris flows can be deadly and are very destructive to infrastructure and agriculture. This project tests the application of luminescence dating to determining the return frequency of such extreme events. The high sediment concentration and the very short flow duration gives very little opportunity for daylight resetting during transport and only a small fraction of the total mass is likely to be reset before transport begins. Here we examine the quartz single-grain dose distribution from a recent known-age (<25 years) debris flow from a small (∼3.9 km2) catchment ∼140 km north of Beijing and compare it with those from three samples from a sedimentary sequence containing the evidence of multiple flow events.Multi-grain quartz OSL signals are dominated by the fast component and <1% of the 150–200 μm grains give a detectable test dose (4.5 Gy) response. Single-grain beta dose recovery gave a ratio of 0.97 ± 0.06 (n = 30) with an over-dispersion of 23 ± 8% (CAM). Both the recent known age and the palaeo-distributions are highly dispersed with over-dispersions greater than 50%. The average weighted doses range between ∼3 mGy and ∼6.5 Gy, indicating that all deposits are no more than a few thousand years. Minimum age modelling give an age estimate for the youngest sample consistent with the known age, and minimum ages for the older palaeo-deposits suggest that there have been at least 3 major debris flows in this small catchment in the last 1000 years.  相似文献   

17.
The Caune de l'Arago, located at Tautavel in the southern part of France, is one of the best documented Middle Pleistocene sites allowing a good understanding of human evolution in Europe. Since its discovery in 1829, the cave yielded more than 140 human remains associated with abundant lithic industries and thousands of faunal remains in a 10 m thick stratigraphical sequence divided in three complexes (Lumley et al., 2014). The Lower stratigraphic complex is only known from cores while the Middle and Upper ones can be divided into about 17 main archaeological levels indexed from the bottom to the top: from level Q to level A. Since 1981, a number of dates were done using practically all the methods available for dating Quaternary period up to 700 ka. U-series dates performed on the upper stalagmitic floor yielded a minimum age of 400 ka for human remains found in the underneath level G (Falguères et al., 2004). This age range confirmed the direct non-destructive gamma-ray age published more than 30 years before (Yokoyama and Nguyen, 1981). Recently, a methodological work was published on herbivorous teeth coming from different parts of the G level highlighting the difficulties to get reliable radiometric dates on a level so rich in bones and partly weathered by guano deposits or issues associated with carbonate accumulation (Han et al., 2010).This study presents new ESR/U-Series dates obtained on herbivorous teeth coming from the lowest excavated layers (Q–P levels) which yield an age range for the entire thick archaeological infilling. The new results suggest that the sedimentological levels containing lithic and faunal artefacts began to be deposited at 550 ka in the P–Q levels and a younger age of 350–400 ka for the F level. The P–Q levels which have yielded bifaces are one of the oldest evidence of the Acheulian culture in the southern part of Western Europe while the dates obtained on G level suggest a contemporaneity with la Sima de los Huesos and TD10 Dolina level at Atapuerca.  相似文献   

18.
Loess deposits distributed in southeastern China play an important role for paleoclimate reconstruction of the subtropical regions. These loess-paleosol deposits are mainly spread within the middle and lower reaches of the Yangtze River as well as in the drainage area of the Huai River. The ages of loess paleosol sequences that are distributed along the Huai River are not well constrained. In this study, the standard single-aliquot regenerative dose (SAR) optically stimulated luminescence (OSL) protocol and two elevated temperature post infrared-infrared stimulated luminescence SAR protocols (pIRIR225 and pIRIR290) were applied on 4–11 μm quartz and polymineral fine grains, respectively, in order to obtain the first numerical luminescence chronology for a loess-paleosol sequence in northern Jiangsu Province. Our results show a good agreement between quartz SAR-OSL and polymineral pIRIR ages up to ~70 ka. These findings confirm that Xiashu loess accumulated during the Last Glaciation. For samples older than this, the ages increasingly deviate with depth. Fine quartz ages beyond 70 ka are interpreted as underestimates, as previous studies reported that quartz ages >70 ka from various sedimentary origins worldwide may underestimate even if they pass rejection criteria and dose recovery tests. On the other hand, the pIRIR ages are most likely overestimating the true depositional ages as indicated by the results of dose recovery tests, where a 30–60% overestimation of the recovered dose is reported for values larger than ~400 Gy. The overestimation of pIRIR protocols was also confirmed by the results obtained when large beta doses were added on top of the natural accrued dose. Moreover, our dating results suggest that L1/S1 transition (corresponding to MIS 5/4 boundary) occurred much higher in the stratigraphic sequence than may have been interpreted from the magnetic susceptibility enhancement. This inconsistency can be assigned to invalidity of magnetic susceptibility as a chronostratigraphical proxy due to ferrimagnetic minerals dissolution or transformation during paedogenesis processes in this humid subtropical region in the southeastern China.  相似文献   

19.
The Three Gorges and Western Hubei area in the geographic central part of China was a potential migration corridor for early hominin and mammals linking South and North China during the Pleistocene period. Some key early hominin sites are known in this region where limestone cave and fissure sites are numerous but difficult to date as beyond the dating range of OSL and mass spectrometry U-series method. Here, we report radiometric dating study for such a hominin site, Meipu (Hubei Province), by coupled ESR and U-series dating of nine fossil teeth and cosmogenic 26Al/10Be burial dating of one quartz sediment. The burial age calculated by simple burial model (573 ± 266 ka) gives a minimum age constraint of the sediment. The fossil dating provided two main age groups at 541 ± 48 ka and 849 ± 39 ka, the older age group is in agreement with the U-series age (>630 ka) of the flowstone overlying the fossil layer and the paleomagnetic data which placed the Brunhes-Matuyama boundary in the fossil layer. The reason of this age difference is probably caused by the U-content discrepancy in the enamel of the dated fossil samples. This study exhibits the limitation of ESR/U-series fossil dating and the importance of using multiple dating approach when it is possible in order to identify the problematic ages.  相似文献   

20.
The establishment of standardised growth curve (SGC) for equivalent dose (De) determination can substantially reduce the amount of instrument time required for OSL measurements. In this study, we investigated the applicability of SGC for the optically stimulated luminescence (OSL) signal from single grains and small aliquots of sedimentary quartz from Haua Fteah cave, in Libya. The samples exhibit large inter-grain and inter-aliquot variation in the shape of their single grain and small aliquot dose response curves (DRCs) constructed from a range of sensitivity-corrected regenerative dose signals (Lx/Tx), which prevents the establishment of a single common SGC among different grains or small aliquots. Instead, the DRCs for the small aliquots can be divided into a minimum of three groups using the Finite Mixture Model, with the DRC saturating at a different dose level for each group. In order to establish a common DRC, or SGC, for each group, we propose a new normalisation method, the so-called least-squares normalisation procedure (‘LS-normalisation’), which largely reduces the variation between aliquots within the same group and allows the establishment of a common DRC, or SGC, for each group. In order to apply the SGC method for these samples, two regenerative dose points are needed for each aliquot to attribute it to one of the groups based on the ratio of the Lx/Tx signals for two sensitivity-corrected regenerative dose points. Equivalent dose (De) values for each aliquot can be estimated using the fitting parameters calculated for the SGC of the relevant group to which it belongs, together with measurements of the natural signal (Ln), one regenerative dose signal (Lx1) and their corresponding test dose signals (Tn, Tx1). For the samples investigated from Haua Fteah, we found that De estimates obtained from the SGCs are consistent with those obtained using a full SAR procedure. Our results suggest that small single-aliquot and single-grain De values obtained from application of the SGC may be underestimated if there is a significant proportion of early-saturating grains present in the sample; such grains or aliquots are mostly rejected due to saturation when analysed using the full SAR procedure. In this case, it is necessary to calculate the De values based only on those grains or aliquots that have relatively high saturation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号