首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

2.
Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics are satisfactory. The measured pIRIR290 De's do not vary significantly with IR stimulation temperatures between 50 °C and 260 °C; a first IR stimulation temperature of 200 °C was adopted. Dose recovery tests were performed by adding different laboratory doses to both laboratory bleached (300 h SOL2) samples and natural samples; the results are satisfactory up to ∼800 Gy. Resulting quartz OSL and feldspar pIRIR290 ages are in good agreement at least back to ∼44 ka; beyond this feldspar pIRIR290 ages are older. The feldspar ages are consistent with the expected age of the S1 palaeosol (MIS 5). There appears to have been a period of fast loess deposition at ∼62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China.  相似文献   

3.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

4.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

5.
In this study thermally transferred (TT) OSL and post-IR elevated temperature IRSL (290 °C) (pIRIR290) dating are applied to deposits covering coastal terraces on the Cap Bon peninsula, Tunisia. Both methods perform well under standard performance tests; dose recovery tests using a modern analogue show that doses relevant to our study can be recovered accurately. Residual signals in the modern analogue for both signals are very small (∼2 Gy). For the younger (<250 ka) deposits reasonable good agreement of the ages is observed between both methods, and in addition with standard quartz OSL dating. Systematic discrepancy in ages is found for the older sediments. The TT-OSL underestimate (compared to the pIRIR290 ages) is most likely due to the short lifetime of the TT-OSL trap; we estimate a lifetime of ∼0.7 Ma at 19 °C (mean ambient air temperature of the study area). This is the first time this lifetime has been derived from geological data and it is within the range of previously published laboratory estimates. This result suggests that TT-OSL is not likely to provide a significant extension of the age range beyond that available from other methods. Our preferred pIRIR290 ages suggest that the geological setting on Cap Bon is not as simple as previously suggested.  相似文献   

6.
OSL and IRSL dating are applied to samples from a 152 m-long drill core to constrain the timing of three glaciolacustrine depositional periods within the infill of an overdeepened bedrock trough in the Lower Glatt valley, N Switzerland. The characterisation of the dose-response suggests that the polymineral IRSL50 and pIRIR180/225 signals are close to saturation, while quartz OSL ages are within the range of reliable dating. The demarcation of the upper quartz OSL dating limit, however, remains challenging. Dose-recovery tests performed with long storage periods were used to investigate the reliability of the high region of the dose-response curve. They suggest an upper limit for reliable dating of ∼400 Gy for these samples, which was considerably lower than the commonly used 2D0 criterion. Lifetimes were calculated for the quartz OSL and the thermal stability of the signal is not considered as problematic for the determined ages. Allowing for a contribution from inherited dose due to partial bleaching, places the infill of the overdeepened valley within the penultimate glacial cycle (MIS6).  相似文献   

7.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

8.
Sediments of river deltas provide valuable records of past coastal environments. Optically-stimulated luminescence (OSL) dating has become an alternative to radiocarbon dating for constraining the sediment chronology in large deltas that allow for sufficient sunlight bleaching of sediments during the fluvial transport. However, its applicability to smaller deltas with mountainous riverine systems has not been confirmed yet. To check this, we examine multiple signals from two Holocene sediment cores in the wave-dominated Thu Bon River delta in central Vietnam. Two cores were collected, respectively, 3.9 km and 1.2 km inland from the present shoreline and both show a >-25-m thick succession of coarsening-upward mud to sand deposits. Coarse grains (180–250 μm in diameter) of quartz and K-feldspar, and fine grains (4–11 μm in diameter) of quartz and polymineral were extracted from the upper and lower parts of the cores for multi-grain measurements of quartz OSL, and of feldspar infrared-stimulated luminescence (IRSL) at 50 °C (IR50) and post-IR IRSL at 175 °C (pIRIR175) to determine burial ages. In addition, facies analysis and radiocarbon dating were conducted. The landward core consists of transgressive to early regressive estuarine and prodelta facies, which is overlain by a sandy beach-shoreface facies. The seaward core consists of a relatively simple shallowing-upward succession from muddy prodelta facies to sandy beach-shoreface facies. All luminescence ages except for pIRIR175 of fine grains are mostly consistent with the radiocarbon ages. Instead, pIRIR175 ages of fine grains are significantly overestimated with variable offsets. OSL and IR50 of fine grains provide reasonable age estimates, as these grains were likely well bleached during the transport even along a short and steep mountainous river. Consistent age estimates of all signals from sand indicate that sand was well-bleached in the beach and shoreface owing to the frequent sediment reworking by waves and currents. These results support the hypothesis that luminescence dating is applicable to Holocene wave-dominated deltas and reiterate that comparing different luminescence signals is an effective way to check reliability of the age estimates in environments where the sunlight bleaching is not ensured.  相似文献   

9.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

10.
Raised beach sand deposits along the southeastern coast of Norway were dated by optical (OSL) and infrared stimulated luminescence (IRSL) and the quartz and K-feldspar luminescence characteristics were described. Due to the poor quartz luminescence characteristics, only a limited number of samples were suitable for OSL dating. More promising are the K-feldspar extracts, with typical K-feldspar luminescence characteristics and no sign of fading. For equivalent dose (De) determination, sand-size quartz and feldspar extracts were used, applying a single aliquot regenerative (SAR) protocol. Both, OSL and IRSL De estimates show a wide distribution, unexpected for beach deposits. The calculated OSL and IRSL age estimates were generally in good agreement and the correctness of the ages was confirmed by independent age control. Because only a limited number of the quartz samples were suitable for OSL dating, IRSL dating of the K-feldspar represents an alternative to OSL quartz dating.  相似文献   

11.
Holocene flood events in the Yangtze River are associated with variations in East Asian Summer Monsoon (EASM) precipitation, and so Yangtze delta sediments may preserve information about the frequency and magnitude of EASM precipitation. These flood/drought cycles of the EASM directly affect the living standards of East Asian population. However, despite its importance, little chronological control is available for the Yangtze Delta sediments; because biogenic carbonate only occurs sporadically, it has proved the difficulty to discuss sedimentation mechanisms and rates in any detail.In 2013 two sediment cores (YD13-G3 and H1) were taken from the Yangtze subaqueous delta to investigate precipitation history. In this study, we investigate the potential of quartz OSL dating of the fine silt fraction (fine-grained quartz; 4–11 μm) from these cores to estimate the depositional age of the sediments. We test whether: (1) Yangtze subaqueous delta sediments contain quartz with suitable characteristics for dating, and (2) quartz grains are well-bleached during/before the transportation process, by examining a modern analogue of suspended particulate matter, and by cross-checking with the doses derived from infrared stimulated luminescence (IRSL) signals (both IR50 and pIRIR160) from feldspar in polymineral fine grains. We find that both the quartz and feldspar luminescence characteristics are satisfactory (quartz dose recovery ratio 1.067 ± 0.004; n = 250, pIRIR160 dose recovery ratio 1.01 ± 0.02; n = 151). Modern suspended particulate matter has measured quartz equivalent doses between 0.1 and 0.2 Gy, suggesting that this material was sufficiently bleached during/before transportation to allow dating of Holocene sediments (mean dose rates of ∼3 Gy ka−1). OSL ages of 44 samples from the 2 cores show apparently rapid accumulation at ∼6 ka between 9.65 and 5.50 m in core H1 and ∼2 ka throughout core G3 and between 5.0 and 0.0 m in core H1. The pIRIR160 signals suggest less light exposure of the core top sediments and of those from the transition layer between ∼6 ka to ∼2 ka, although there is no evidence for incomplete bleaching of quartz. The question remains as to whether significant deposition took place only at these two times, or whether the record has been disturbed by erosion/reworking.  相似文献   

12.
Unlike the well-studied optically stimulated luminescence (OSL) signal of (macrocrystalline) quartz, not much is known about OSL from natural amorphous and microcrystalline silicon dioxide. These materials – generally termed “silex” – were widely used for prehistoric tool production, and thermoluminescence (TL) is routinely applied do date the firing event of heated specimens. This study presents data on basic OSL characteristics of silex such as signal composition and component-resolved thermal stability as well as the applicability of OSL for dating of burnt lithic tools.Fitting of LM-OSL curves yielded similar components (mostly five) as observed for quartz, with the photoionization cross-sections being in the same order of magnitude for both materials. Three different methods (LM-OSL pulse annealing, short-shine pulse annealing as well as the varying heating rate method) were applied to study the thermal stability of components and allowed calculating trap parameters E and s, and hence the electron retention lifetime. Only the most light-sensitive (“fast-like”) component proved to be of sufficient thermal stability for dating applications, as evidenced from coherent experimental results. All other components already diminished at preheating temperatures > 200 °C. Pulse annealing measurements further indicate that electron populations sampled by OSL and those responsible for the ca. 380 °C TL-“dating peak” are not identical. Dose recovery tests applying an OSL-SAR protocol with “hot bleach” in between the regeneration cycles showed good reproducibility of a known dose if only the initial OSL signal (ca. 0–0.5 s at 90% LED power) is used. Finally, obtained OSL-SAR and TL ages based on the blue TL emission are in agreement within errors for two Middle Paleolithic archeological samples showing a “fast-like” component. These results verify the experimental findings of sufficient long-term stability of the initial OSL signal. Since not all silex specimens deliver a bright and stable OSL signal, optical ages of suitable samples may serve as an additional internal check for the paleodose estimate rather than substituting TL as a standard technique for dating of heated silex.  相似文献   

13.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

14.
Loess deposits distributed in southeastern China play an important role for paleoclimate reconstruction of the subtropical regions. These loess-paleosol deposits are mainly spread within the middle and lower reaches of the Yangtze River as well as in the drainage area of the Huai River. The ages of loess paleosol sequences that are distributed along the Huai River are not well constrained. In this study, the standard single-aliquot regenerative dose (SAR) optically stimulated luminescence (OSL) protocol and two elevated temperature post infrared-infrared stimulated luminescence SAR protocols (pIRIR225 and pIRIR290) were applied on 4–11 μm quartz and polymineral fine grains, respectively, in order to obtain the first numerical luminescence chronology for a loess-paleosol sequence in northern Jiangsu Province. Our results show a good agreement between quartz SAR-OSL and polymineral pIRIR ages up to ~70 ka. These findings confirm that Xiashu loess accumulated during the Last Glaciation. For samples older than this, the ages increasingly deviate with depth. Fine quartz ages beyond 70 ka are interpreted as underestimates, as previous studies reported that quartz ages >70 ka from various sedimentary origins worldwide may underestimate even if they pass rejection criteria and dose recovery tests. On the other hand, the pIRIR ages are most likely overestimating the true depositional ages as indicated by the results of dose recovery tests, where a 30–60% overestimation of the recovered dose is reported for values larger than ~400 Gy. The overestimation of pIRIR protocols was also confirmed by the results obtained when large beta doses were added on top of the natural accrued dose. Moreover, our dating results suggest that L1/S1 transition (corresponding to MIS 5/4 boundary) occurred much higher in the stratigraphic sequence than may have been interpreted from the magnetic susceptibility enhancement. This inconsistency can be assigned to invalidity of magnetic susceptibility as a chronostratigraphical proxy due to ferrimagnetic minerals dissolution or transformation during paedogenesis processes in this humid subtropical region in the southeastern China.  相似文献   

15.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

16.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

17.
This study focuses on characterizing the thermoluminescence (TL) and optically stimulated luminescence (OSL) of quartz in burnt clay, pottery, and the sediments unearthed from a Neolithic site, the Beicun site of the Liangzhu culture. It shows that the initial OSL signals (within 0.8 s) of most burnt clay and pottery sherds are not dominated by the fast component. Results of a heating simulation experiment of sediment quartz show that annealing at temperatures exceeding 600–800 °C decreased the proportion of the fast component in the initial signal slightly. In addition, the proportion of the medium component in the later signal (0.8–5 s) increased significantly, resulting in a decrease in the Fast Ratio value. Therefore, high annealing temperature may be an important reason for the slow decay rate of OSL signals of the burnt clay and pottery samples. The De(t) plot shows that most of the samples have thermally stable OSL component signals, which have no significant effect on the final OSL ages. The single-aliquot regenerative-dose (SAR) protocol was used to determine the OSL and TL ages for chunk burnt clay and pottery sherds. The high-precision age of the last archaeological heating event, such as sacrifice, burning, or domestic firing, can be obtained by determining the TL and OSL ages of a homogeneous chunk of burnt clay. The OSL results are consistent with the 14C age of carbon chips extracted from burnt clay. The age of the Beicun site is finally determined to be approximately 5000–5300 BP (BP represents before 2020), belonging to the early period of the Liangzhu culture.  相似文献   

18.
Sediments deposited by the AD 869 Jogan tsunami offer an opportunity to test the reliability of optically stimulated luminescence (OSL) dating of relatively old historical tsunami deposits. We collected a geoslicer sample from sand deposited on the Sendai Plain, northeastern Japan, by the Jogan tsunami and applied quartz OSL dating to it. We then compared the OSL ages with the known age of the tsunami event. In ascending order, the sedimentary sequence in the geoslicer sample consists of the beach–dune sand, lower peat, Jogan tsunami deposit, upper peat, pre-2011 paddy soil, and the 2011 tsunami deposit. To obtain equivalent dose (De,bulk), a standard single-aliquot renegerative-dose (SAR) protocol was applied to large aliquots of the 180–250 μm fraction of two samples from the beach–dune sand, and four samples from differing levels of the Jogan tsunami deposit. The OSL decay curves were dominated by the medium component; thus, for two samples from the Jogan deposit the fast-component OSL signal was isolated and used to determine the equivalent dose (De,fast). Using De,bulk, OSL ages of the tsunami deposit were underestimated by ∼40%, and even the beach–dune sand was dated younger than AD 869. In contrast, De,fast provided a robust age estimate with only slight underestimation. A pulse annealing test showed that the bulk and medium-component OSL signals were thermally unstable. The medium component in the natural OSL was clearly truncated in comparison to the regenerated OSL; the medium component is thus considered to be the main cause of the underestimated ages. Similar effects of a dominant medium-component OSL have been reported in tectonically active regions, which are also prone to tsunamis. The effect of this dominance should be carefully considered in quartz OSL dating of tsunami deposits.  相似文献   

19.
Multiple-aliquot regenerative-dose violet stimulated luminescence (MAR-VSL) dating studies of the Chinese loess-palaeosol sequence in Luochuan using sand- and silt-sized quartz have previously produced inconsistent results; the VSL ages were in agreement with their independent ages up to ∼900 ka for sand-sized quartz, whereas the silt-sized VSL ages underestimated the independent chronology beyond ∼100 ka. Here we therefore evaluate the VSL dose response pattern of sand- (63–100 μm) and silt-sized (4–11 μm) quartz grains from the loess-palaeosol sequence in southern Germany in high resolution but with a limited age range up to ∼160 ka. All the samples studied benefit from good age control provided by reliable quartz optically stimulated luminescence (OSL) ages and fading corrected feldspar post-infrared infrared stimulated luminescence at 225 °C (pIRIR225) ages, which can be used for assessing the validity of the estimated VSL ages. The comparison of the MAR standardised dose response curve (DRC) using regeneration doses up to ∼1000 Gy for both grain size fractions demonstrates that they are almost similar in shape with comparable characteristic saturation doses. The comparison of the natural and laboratory generated DRCs of each grain size reveals that they broadly overlap in the low dose range for both fractions, while in the high dose range the deviation between natural and laboratory DRCs is higher for the silt-sized quartz fraction. It is also shown that the magnitude of the characteristic saturation dose is dependent upon the size of the maximum given dose, especially for the silt-sized quartz. The constructed laboratory standardised DRCs to very high doses (up to ∼6000 Gy) showed continuous signal growth at high doses, particularly in the case of silt-sized quartz grains, thereby confirming our previous observation. The sand-sized quartz has a much less pronounced linear growth component and can therefore be considered more suitable for dating samples with equivalent doses falling on the high dose region of the DRC.  相似文献   

20.
Luminescence dating of late Quaternary sediments in Peru is challenging, especially on the Peruvian coast. Earlier studies have shown that quartz grains often exhibit a thermally unstable, medium signal that caused the underestimation of Optically Stimulated Luminescence (OSL) ages. InfraRed Stimulated Luminescence (IRSL) dating has shown to produce more reliable ages, depending, amongst other factors, on the age model (Central or Minimum Age Model), and the IRSL signal. IRSL dating of geoarchaeological sediments has, however, hardly been carried out, let along validated, against an independent age dataset. This dating approach is, nonetheless, the only promising way to date the geological substrate in which many of Peru's archaeological sites are buried. Peru contains some of the oldest and most important archaeological heritage sites, yet not much is known of the environmental context in which many of its early civilizations prospered. A better understanding of which luminescence method works best could therefore help in a better understanding of the geological-stratigraphical context of many of Peru's sites.To investigate this matter more fully, we compared the luminescence dating results of seven sediment samples from the top layer of the Lima alluvial fan and from geoarchaeological layers of the Maranga Complex (San Miguel, Lima), with an independent dataset of sixteen 14C ages. Our results showed that the quartz OSL ages always underestimated the expected ages due to a signal dominated by medium and slow components, and that the post-IR IRSL225 (pIR IRSL225) and IRSL50 ages of K-feldspars, on basis of the Central Age Model (CAM), always overestimated the expected ages. The Minimum Age Model (MAM) on the other hand, correctly predicted the expected ages for the early Holocene, Lima alluvial fan sediments using the pIR IRSL225 signal of K-feldspars, and the late Holocene, geoarchaeological ages using the IRSL50 signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号