首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Using acoustic measurement interfaced with a large volume multi-anvil apparatus in conjunction with in situ X-radiation techniques, we are able to measure the density and elastic wave velocities (VP and VS) for both ortho- and high-pressure clino-MgSiO3 polymorphs in the same experimental run. The elastic bulk and shear moduli of the unquenchable high-pressure clinoenstatite phase were measured within its stability field for the first time. The measured density contrast associated with the phase transition OEN → HP-CEN is 2.6-2.9% in the pressure of 7-9 GPa, and the corresponding velocity jumps are 3-4% for P waves and 5-6% for S waves. The elastic moduli of the HP-CEN phase are KS=156.7(8) GPa, G = 98.5(4) GPa and their pressure derivatives are KS′=5.5(3) and G′ = 1.5(1) at a pressure of 6.5 GPa, room temperature. In addition, we observed anomalous elastic behavior in orthoenstatite at pressure above 9 GPa at room temperature. Both elastic wave velocities exhibited softening between 9 and 13-14 GPa, which we suggest is associated with a transition to a metastable phase intermediate between OEN and HP-CEN.  相似文献   

2.
A steady-state radial heat flux method is used to determine the apparent, lattice and radiative, thermal conductivity and its p, T-dependence up to 6 GPa and over a wide temperature range from 300 to 1600 K. The method employs a differential thermocouple to resolve small changes in temperature gradient due to a line source placed in a sample space subjected to well-defined uniform test temperatures. Measurements are made using an on-line computer. The method is shown to be eminently suitable for determining: (1) the p, T-dependence of the phonon conductivity of cubic single crystals and polycrystalline samples; (2) minima in the apparent thermal conductivity marking the onset of radiative contributions; (3) isolation of phonon and radiative components at high T; (4) conductivity variations caused by progressive polymorphic structure transformations; and (5) conductivity variations through high-pressure melting points into the liquid phase.Results for cubic structures such as MgO and NaCl give good agreement with existing standard values at low temperatures. The conductivity of MgO goes with the inverse of the temperature which is expected from 3-phonon processes. The conductivity of NaCl is of the form λαT?1.32 with the deviation most likely due to thermal expansion effects.At higher temperatures, a radiative contribution was observed in NaCl and CaCO3. Calculated values of the extinction coefficient of NaCl increase slightly with pressure.  相似文献   

3.
High-pressure phase relations in the system NaAl3Si3O11–CaAl4Si2O11 were examined at 13–23 GPa and 1600–1900 °C, using a multianvil apparatus. A Ca-aluminosilicate with CaAl4Si2O11 composition, designated CAS phase, is stable above about 13 GPa at 1600 °C. In the system NaAl3Si3O11–CaAl4Si2O11, the CAS phase dissolving NaAl3Si3O11 component coexists with jadeite, corundum and stishovite below 22 GPa, above which the CAS phase coexists with Na-rich calcium ferrite, corundum and stishovite. At 1600 °C, the solubility of NaAl3Si3O11 component in the CAS solid solution increases with increasing pressure up to about 50 mol% at about 22 GPa, above which the solubility decreases with pressure. The maximum solubility of NaAl3Si3O11 component in the CAS phase increases with temperature up to around 70 mol% at 1900 °C at 22 GPa. The dissociation of NaAlSi2O6 jadeite to NaAlSiO4 calcium ferrite plus stishovite occurs at about 22 GPa. Lattice parameters of the CAS phase with the hexagonal Ba-ferrite structure change with increase of the NaAl3Si3O11 component: a-axis decreases and c-axis slightly increases, resulting in decrease of molar volume. Enthalpies of the CAS solid solutions were measured by high-temperature drop-solution calorimetry techniques. The results show that enthalpy of hypothetical NaAl3Si3O11 CAS phase is much higher than the mixture of NaAlSi2O6 jadeite, corundum and stishovite and is close to that of the mixture of NaAlSiO4 calcium ferrite, corundum and stishovite. When we adopt the Na:Ca ratio of 75:25 of the natural Na-rich CAS phase in a shocked Martian meteorite, Zagami, the phase relations determined above suggest that the natural CAS phase crystallized from melt at pressure around 22 GPa and temperature close to or higher than 2000–2200 °C. The inferred P, T conditions are consistent with those estimated using other high-pressure minerals in the shocked meteorite.  相似文献   

4.
First-principles calculations have been used to determine the equation of state of Fe3C in both its low-pressure magnetically ordered and high-pressure non-magnetically ordered states; at 0 K the ferromagnetic transition was found to occur at about 60 GPa. In the high pressure, non-magnetically ordered regime at 0 K the material may be described by a Birch-Murnaghan third-order equation of state with V0=8.968(7) Å3 per atom, K0=316.62(2) GPa and K′=4.30(2). At atmospheric pressure the ferromagnetic phase transition in Fe3C occurs at ∼483 K; preliminary measurements of the thermal expansion by powder neutron diffraction show that this transition produces a large effect on thermoelastic properties. The volumetric thermal expansion coefficient in the paramagnetic phase was found to be 4.34×10−5 K−1 at T∼550 K. By applying a thermal expansion correction to the calculated equation of state at 0 K, predicted values for the density and adiabatic incompressibility of this material at core pressures and temperatures were obtained. These results appear to be sufficiently different from seismological data so as to preclude Fe3C as the major inner core-forming phase.  相似文献   

5.
Molecular dynamics (MD) modeling of the 10-Å phase, Mg3Si4O10(OH)2·xH2O, with x=2/3, 1.0 and 2.0 shows complex structural changes with pressure, temperature and water content and provides new insight into the structures and stabilization of these phases under subduction zone conditions. The structure(s) of this phase and its role as a reservoir of water in the mantle have been controversial, and these calculations provide specific predictions that can be tested by in situ diffraction studies. At ambient conditions, the computed structures of talc (x=0) and the 10-Å phases with x=2/3 and 1.0 are stable over the 350-ps period of the MD simulations. Under these conditions, the 10-Å phases show phlogopite-like layer stacking in good agreement with previously published structures based on powder X-ray diffraction data for samples quenched from high-pressure and high-temperature experiments. The calculations show that the 10-Å phase with x=2.0 is unstable at ambient conditions. The computed structures at P=5.5 GPa and T=750 K, well within the known stability field of the 10-Å phase, change significantly with water content, reflecting changing H-bonding configurations. For x=2/3, the layer stacking is talc-like, and for x=1.0, it is phlogopite-like. The calculations show that transformation between these two stackings occurs readily, and that the talc-like stacking for the x=2/3 composition is unlikely to be quenchable to ambient conditions. For x=2.0, the layer stacking at P=5.5 GPa and T=750 K is different than any previously proposed structure for a 10-Å phase. In this structure, the neighboring basal oxygens of adjacent magnesium silicate layers are displaced by b/3 (about 3 Å) resulting in the Si atoms of one siloxane sheet being located above the center of the six-member ring across the interlayer. The water molecules are located 1.2 Å above the center of all six-member rings and accept H-bonds from the OH groups located below the rings. The b/3-displaced structure does not readily transform to either the talc-like or phlogopite-like structure, because neither of these stackings can accommodate two water molecules per formula unit. There is likely to be a compositional discontinuity and phase transition between the b/3-displaced phase and the phase with phlogopite-like stacking. The simulations reported here are the first to use the recently developed CLAYFF force field to calculate mineral structures at elevated pressures and temperatures.  相似文献   

6.
We have investigated the effect of Al3+ on the room-temperature compressibility of perovskite for stoichiometric compositions along the MgSiO3-AlO1.5 join with up to 25 mol% AlO1.5. Aluminous Mg-perovskite was synthesized from glass starting materials, and was observed to remain a stable phase in the range of ∼30-100 GPa at temperatures of ∼2000 to 2600 K. Lattice parameters for orthorhombic (Pbnm) perovskite were determined using in situ X-ray diffraction at SPring8, Japan. Addition of Al3+ into the perovskite structure increases orthorhombic distortion and unit cell volume at ambient conditions (V0). Compression causes anisotropic decreases in axial length, with the a axis more compressive than the b and c axes by about 25% and 3%, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to pressures of at least 100 GPa. Our results show that substitution of Al3+ causes a mild increase in compressibility, with the bulk modulus (K0) decreasing at a rate of −67±35 GPa/XAl. This decrease in K0 is consistent with recent theoretical calculations if essentially all Al3+ substitutes equally into the six- and eight-fold sites by charge-coupled substitution with Mg2+ and Si4+. In contrast, the large increase in compressibility reported in some studies with addition of even minor amounts of Al is consistent with substitution of Al3+ into six-fold sites via an oxygen-vacancy forming substitution reaction. Schematic phase relations within the ternary MgSiO3-AlO1.5-SiO2 indicate that a stability field of ternary defect Mg-perovskite should be stable at uppermost lower mantle conditions. Extension of phase relations into the quaternary MgSiO3-AlO1.5-FeO1.5-SiO2 based on recent experimental results indicates the existence of a complex polyhedral volume of Mg-perovskite solid solutions comprised of a mixture of charge-coupled and oxygen-vacancy Al3+ and Fe3+ substitutions. Primitive mantle with about 5 mol% AlO1.5 and an Fe3+/(Fe3++Fe2+) ratio of ∼0.5 is expected to be comprised of ferropericlase coexisiting with Mg-perovskite that has a considerable component of Al3+ and Fe3+ defect substitutions at conditions of the uppermost lower mantle. Increased pressure may favor charge-coupled substitution reactions over vacancy forming reactions, such that a region could exist in the lower mantle with a gradient in substitution mechanisms. In this case, we expect the physical and transport properties of Mg-perovskite to change with depth, with a softer, probably more hydrated, defect dominated Mg-perovskite at the top of the lower mantle, grading into a stiffer, dehydrated, charge-coupled substitution dominated Mg-perovskite at greater depth.  相似文献   

7.
8.
Recent studies have indicated that a significant amount of iron in MgSiO3 perovskite (Pv) is Fe3+ (Fe3+/ΣFe = 10–60%) due to crystal chemistry effects at high pressure (P) and that Fe3+ is more likely than Fe2+ to undergo a high-spin (HS) to low-spin (LS) transition in Pv in the mantle. We have measured synchrotron Mössbauer spectroscopy (SMS), X-ray emission spectroscopy (XES), and X-ray diffraction (XRD) of Pv with all iron in Fe3+ in the laser-heated diamond-anvil cell to over 100 GPa. Fe3+ increases the anisotropy of the Pv unit cell, whereas Fe2+ decreases it. In Pv synthesized above 50 GPa, Fe3+ enters into both the dodecahedral (A) and octahedral (B) sites approximately equally, suggesting charge coupled substitution. Combining SMS and XES, we found that the LS population in the B site gradually increases with pressure up to 50–60 GPa where all Fe3+ in the B site becomes LS, while Fe3+ in the A site remains HS to at least 136 GPa. Fe3+ makes Pv more compressible than Mg-endmember below 50 GPa because of the gradual spin transition in the B site together with lattice compression. The completion of the spin transition at 50–60 GPa increases bulk modulus with no associated change in density. This elasticity change can be a useful seismic probe for investigating compositional heterogeneities associated with Fe3+.  相似文献   

9.
Iron sulfide (FeS) was investigated using first-principles calculations up to a pressure of 400 GPa. A number of new phase transitions were found. An antiferromagnetic MnP-type structure, FeS II, was confirmed to be stable at low pressures, whereas at high pressures (40–135 GPa) we find a new stable phase, with a non-magnetic MnP-type structure, FeS VI. The observed first-order change in the cell shape between the two phases can be explained by the difference in magnetic configurations. The calculated cell parameters, atomic coordinates, and bulk modulus of non-magnetic MnP-type phase are consistent with those determined from experiment. The upper pressure limit of the stability of the non-magnetic MnP-type phase was calculated to be 135 GPa. A hitherto unsuspected phase transition from the non-magnetic MnP-type to a phase with Pmmn symmetry, FeS VII, was identified using the evolutionary crystal structure prediction (USPEX) method. The structure of the Pmmn phase has no known analogues, but can be described as a distortion of the NaCl-type structure. The Pmmn phase with the distorted NaCl-type structure is stable from 135 GPa at least up to 400 GPa. According to previous experiments and the present study, the transition sequence of FeS at low temperatures is as follows: troilite ➔ antiferromagnetic MnP-type phase ➔ monoclinic phase ➔ non-magnetic MnP-type phase ➔ Pmmn phase. The calculated volume reduction from the monoclinic to the non-magnetic MnP-type phase is 1.0% at 40 GPa, which is in good agreement with experimental observations. The calculated volume reduction from the non-magnetic MnP-type to the Pmmn phase is 3.7% at 135 GPa.  相似文献   

10.
Exsolution microstructures including ilmenite±garnet in clinopyroxene and rutile in garnet are common in clinopyroxenite and eclogite from the Sulu ultrahigh-pressure (UHP) terrane. In order to understand the phase relations and Ti solubility in both garnet and clinopyroxene in a natural TiO2-bearing system, several experiments at 5-15 GPa, 1000-1400°C were carried out using the multianvil high-pressure apparatus. The Hujianlin ilmenite-rich garnet clinopyroxenite showing exsolution microstructure was selected as starting material, because it closely approaches a composition lying in the TiO2-CaO-MgO-FeO-Al2O3-SiO2 system. Except for minor melt in one experiment at 1400°C and 5 GPa, other run products contain majoritic garnet+clinopyroxene±ilmenite (or rutile) and exhibit neoblastic texture. With increasing pressure, Ti and Ca, Mg and Si contents of neoblastic garnet increase with decreasing Al. The principal coupled substitutions are Ca2+Ti4+→2Al3+ and Si4+Mg2+→2Al3+ responding to majorite component increase. Titanium solubility (0.8-4.5 wt% as TiO2) in garnet and GrtTi/CpxTi ratio have a pronounced positive correlation with pressure between 5 and 15 GPa. On the other hand, the coexisting clinopyroxene contains low Ti (0.17-0.53 wt% as TiO2), and shows no significant pressure effect. Rutile exsolution in garnet is coupled to that of pyroxene exsolution; both are exsolved from majoritic garnet on decompression. Therefore, the amount of such exsolved lamellae is a potential indicator of high-pressure metamorphism in exhumed rocks, whereas the TiO2 content of clinopyroxene coexisting with garnet is not sensitive to pressure change.  相似文献   

11.
In situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press at SPring-8 on majoritic garnet synthesized from natural mid-ocean ridge basalt (MORB), whose chemical composition is close to the average of oceanic crust, at 19 GPa and 2200 K. Pressure-volume-temperature data were collected using a newly developed high-pressure cell assembly to 21 GPa and 1273 K. Data were fit to the high-temperature Birch-Murnaghan equation of state, with fixed values for the ambient cell volume (V0 = 1574.14(4) Å3) and the pressure derivative of the isothermal bulk modulus (KT = 4). This yielded an isothermal bulk modulus of KT0 = 173(1) GPa, a temperature derivative of the bulk modulus (∂KT/∂T)P = −0.022(5) GPa K−1, and a volumetric coefficient of thermal expansivity α = a + bT with values of a = 2.0(3) × 10−5 K−1 and b = 1.0(5) × 10−8 K−2. The derived thermoelastic parameters are very similar to those of pyrope. The density of subducted oceanic crust compared to pyrolitic mantle at the conditions in Earth's transition zone (410-660 km depth) was calculated using these results and previously reported thermoelastic parameters for MORB and pyrolite mineral assembledges. These calculations show that oceanic crust is denser than pyrolitic mantle throughout the mantle transition zone along a normal geotherm, and the density difference is insensitive to temperature at the pressures in lower part of the transition zone.  相似文献   

12.
Pressure behavior of ZnTe at room temperature was studied using an X-ray energy dispersive method on a DIA type cubic anvil apparatus (SAM-85) at NSLS-X17B1. By using powdered polyethylene, the sample and NaCl for a pressure scale were held under quasihydrostatic conditions, which were confirmed by X-ray diffraction method. Two high-pressure phase transitions were confirmed using X-ray powder diffraction simultaneously with electrical resistance measurements. The phase transition pressures under quasihydrostatic conditions were determined to be 9.6 GPa, at which the resistance increased, and 12.0 GPa, which was the midpoint of a large resistance decrease. Errors in the pressure determinations were estimated to be less than 0.2 GPa. These pressure values may depend on grain size and anisotropic stress effects on the calibrant. From X-ray observation of ZnTe, the bulk modulus of the zinc blende structure was calculated to beK 0=51(3) GPa andK 0 =3.6(0.8), and the first transition at 9.6 GPa was found to have about 9% volume change. It was consistent with an anomaly in the pressure generating curves.  相似文献   

13.
Four years of detailed ground-water monitoring at a newly installed, seasonal-use, domestic septic system located on poorly buffered (CaCO3 equivalent content ≤ 1.6 wt.%) lacustrine silt, has revealed the development of an acidic ground-water plume. Acid, generated by the partial oxidation of effluent NH4+ dissolved organic carbon (DOC), and possibly sulfide minerals present in the sediment, has resulted in a distal plume core zone with pH values in the range of 4.4 to 5.0. The acidic zone, where NH4+ does, however, persist (> 2 mg/1, as N) and where DOC remains elevated (6–13 mg/1), is associated with high average concentrations of the trace metals Fe (4.7 mg/1), Al (1.9 mg/1), and Mn (3.6 mg/1). Attenuation of nitrogen along the plume core flowpath is indicated by a decrease in the N/ Cl ratio from an effluent value of 1.7, to a plume value of only 0.5 after 4 m of subsurface flow. Increased SO42− levels observed in the zone of N depletion suggest that attenuation can be at least partly attributed to reduction of plume NO3 by oxidation of reduced S present in the sediment. PO43− has not migrated significantly beyond the infiltration bed gravel layer, demonstrating that PO43− mobility is limited in these sediments (retardation factor > 10).  相似文献   

14.
The temperatures induced in crystalline calcite (CaCO3) upon planar shock compression (95-160 GPa) are reported from two-stage light gas gun experiments. Temperatures of 3300-5400 K are obtained by fitting six-channel optical pyrometer radiances in the 450-900 nm range to the Planck gray-body radiation law. Thermodynamic calculations demonstrate that these temperatures are some 400-1350 K lower than expected for vibronic excitations of the lattice with a 3R/mole-atom specific heat (R is gas constant). The temperature deficit along the Hugoniot is larger than that expected from only melting. In addition to melting, it appears likely that shock-induced decomposition of calcite occurs behind the shock front. We modeled disproportionation of calcite into CaO (solid) plus CO2 (gas). For temperature calculations, specific heat at constant volume for 1 mole of CO2 is taken to be 6.7R as compared to 9R in the solid state; whereas a mole of calcite and a mole of CaO have their solid state values 15R and 6R, respectively. Calculations suggest that the calcite decomposes to CaO and CO2 at ∼110±10 GPa along the Hugoniot. Recent reanalysis of earlier VISAR measurements of particle velocity profiles [1] indicates that calcite shocked to 18 GPa undergoes disproportionation at much lower pressures upon isentropic expansion.  相似文献   

15.
The electronic spin state of iron in perovskites with the chemical composition Mg0.9375Fe0.0625SiO3, Mg0.8750Fe0.1250SiO3 and Mg0.9375Fe0.0625Si0.9375Fe0.0625O3, have been determined at 0 K and various pressures between 40–160 GPa, using ab initio methods. The results indicate that ferric iron exhibits a wide range of spin transition pressures between about 60–160 GPa, while ferrous iron has a much narrower span, between about 130–145 GPa. In general, the lowest spin transition pressures are associated with the most energetically favorable substitution configurations, where iron atoms are closest together. The effect of spin state on calculated elastic properties is found to be small.  相似文献   

16.
The orthorhombic MgSiO3 perovskite has been synthesized with the aid of a double-stage split-sphere-type high-pressure apparatus at about 280 kbar and 1000°C. The unit cell dimensions are: a = 4.7754(3)Å, b = 4.9292(4)Å and c = 6.8969(5)Å with the probable space group Pbnm. Calculated density is 4.108 g cm?3. Crystal structure determination has been carried out by means of both the geometrical simulation (DLS) technique and the ordinary powder X-ray analysis. The results indicate that the MgSiO3 perovskite is closer to the ideal perovskite than ScAlO3 perovskite.  相似文献   

17.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

18.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

19.
Increases in calcite deposition rates combined with decreases in δ13C and δ18O in three modern stalagmites from Brown's Folly Mine, Wiltshire, England, are correlative with a well-documented re-vegetation above the mine. Increased soil PCO2 resulted in greater amounts of dissolved CaCO3 in the drip waters, which consequently increased annual calcite deposition rates. The absence of deposition prior to 1916 (28 years after the mine was closed) indicates that vegetation had not yet sufficiently developed to allow higher PCO2 values to form in the soil. Lower δ13C values through time may reflect the increased input of isotopically light biogenic carbon to the total dissolved inorganic carbon (DIC). δ18O decreased synchronously with δ13C, reflecting the increased importance of isotopically light winter recharge due to greater biomass-induced summer evapotranspiration. This is the first empirical demonstration that vegetation density can control stalagmite growth rates, δ13C, and δ18O, contributing critical insights into the interpretation of these climate proxies in ancient stalagmites.  相似文献   

20.
The evolution with pressure of the unit-cell parameters brownmillerite (Ca2Fe2O5), a stoichiometric defect perovskite structure, has been determined to a maximum pressure of 9.46 GPa, by single-crystal X-ray diffraction measurements at room temperature. Brownmillerite does not exhibit any phase transitions in this pressure range. A fit of a third-order Birch–Murnaghan equation-of-state to the PV data yields values of KT0=127.0(5) GPa and K0′=5.99(13). Analysis of the unit-cell parameter data shows that the structure compresses anisotropically. Compressional moduli for the axes are Ka0=141(1) GPa, Kb0=118(3) GPa and Kc0=122.2(2) GPa, with Ka0′=8.9(3), Kb0′=6.2(6) and Kc0′=4. The stiffest direction (i.e. along a) coincides with the direction of the FeO4 tetrahedral chains. Comparison of these data with the elasticity systematics of Ca-perovskites shows that the presence of oxygen vacancies in the brownmillerite structure softens the structure by ∼25% and that the ordering of vacancies in the perovskite structure increases the anisotropy of compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号