首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper ∼300 m of the water column along two ∼13,500 km transects between ∼50°N and ∼52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between ∼23.5°N and ∼23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ∼42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr−1 and 0.81–1.43 Tg CH4 yr−1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for ∼6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought.  相似文献   

2.
Previous work has shown that methane anomalies frequently occur within the rift valley of the Mid-Atlantic Ridge (MAR). The plumes appear confined within the high, steep walls of the valley, and it is not known whether methane may escape to the open ocean outside. In order to investigate this question, the concentration and 13C/12C ratio of methane together with CCl3F concentration were measured in the northeastern Atlantic including the rift valley near 50°N. This segment contained methane plumes centered several 100 m above the valley floor with δ13C values mostly between –15‰ and –10‰. A limited number of helium isotope measurements showed that δ3He increased to 17% at the bottom of the valley, which suggests the helium and methane sources may be spatially separated. In the eastern Atlantic away from the ridge (48°N, 20°W), the methane concentration decreased monotonically from the surface to the bottom, but the methane δ13C exhibited a mid-water maximum of about –25‰. The bottom water methane contained a significantly lower δ13C of about –36‰. Thus, it appears that isotopically heavy methane escapes from the MAR into North Atlantic Deep Water (NADW) that contacts the ridge crest while circulating to the east. The formation of NADW supplies isotopically light methane that dilutes the input of heavy carbon from the ridge. We employed a time-dependent box model to calculate the extent of isotope dilution and thereby the flux of MAR methane into the NADW circulation. The degree of methane oxidation, which affects the 13C/12C of methane through kinetic isotope fractionation, was estimated by comparing methane and CFC-11 model results with observations. The model calculations indicate a MAR methane source of about 0.06×10−9 mol L−1 yr−1 to waters at the depth of the ridge crest. Assuming this extends to a 500 m thick layer over half of the entire Atlantic, the amount of methane escaping from the MAR to the open ocean is estimated to be about 1×109 mol yr−1. The total production of methane within the rift valley is likely much greater than the flux from the valley to the outside because of local oxidation. This implies that serpentinization of ultramafic rocks supports much of methane production in the rift valley because the amount expected from basalt degassing in association with mantle helium (<0.6×109 mol CH4 yr−1) is less than even the net amount escaping from the valley. The model results also indicate the methane specific oxidation rate is about 0.05 yr−1 in open waters of the northern Atlantic.  相似文献   

3.
Under present-day conditions, rivers are the main source of fine sediments dispersed to the Bay of Biscay. They deliver about 2.5×106 t yr−1 of continental fine sediments, 60% of which is derived from the Gironde estuary. Of this flux, 65% is believed stored on the shelf. Two kinds of mud fields can be found in the Bay of Biscay: coastal mud and shelf mud belts. The total mass of fine sediments stored during the past 2000 years is 3.2×109 t. Consequently, about 0.9×106 t yr−1 could reach the shelf edge and eventually the open sea. From this amount of displaced material and the deposition surface areas, an evaluation of sediment fluxes across the margin during the late Holocene period is discussed. This evaluation is compared with results obtained from ECOsystéme du canyon du cap-FERret (ECOFER) data from sediment traps and surficial box cores.  相似文献   

4.
Dissolved oxygen (DO) in the ocean is a tracer for most ocean biogeochemical processes including net community production and remineralization of organic matter which in turn constrains the biological carbon pump. Knowledge of oxygen dynamics in the North Atlantic Ocean is mainly derived from observations at the Bermuda Atlantic Time-series Study (BATS) site located in the western subtropical gyre which may skew our view of the biogeochemistry of the subtropical North Atlantic. This study presents and compares a 15 yr record of DO observations from ESTOC (European Station for Time-Series in the Ocean, Canary Islands) in the eastern subtropical North Atlantic with the 20 yr record at BATS. Our estimate for net community production of oxygen was 2.3±0.4 mol O2 m−2 yr−1 and of oxygen consumption was −2.3±0.5 mol O2 m−2 yr−1 at ESTOC, and 4 mol O2 m−2 yr−1 and −4.4±1 mol m−2 yr−1 at BATS, respectively. These values were determined by analyzing the time-series using the Discrete Wavelet Transform (DWT) method. These flux values agree with similar estimates from in-situ observational studies but are higher than those from modeling studies. The difference in net oxygen production rates supports previous observations of a lower carbon export in the eastern compared to the western subtropical Atlantic. The inter-annual analysis showed clear annual cycles at BATS whereas longer cycles of nearly 4 years were apparent at ESTOC. The DWT analysis showed trends in DO anomalies dominated by long-term perturbations at a basin scale for the consumption zones at both sites, whereas yearly cycles dominated the production zone at BATS. The long-term perturbations found are likely associated with ventilation of the main thermocline, affecting the consumption and production zones at ESTOC.  相似文献   

5.
The Menez Gwen hydrothermal vents, located on the flanks of a small young volcanic structure in the axial valley of the Menez Gwen seamount, are the shallowest known vent systems on the Mid-Atlantic Ridge that host chemosynthetic communities. Although visited several times by research cruises, very few images have been published of the active sites, and their spatial dimensions and morphologies remain difficult to comprehend. We visited the vents on the eastern flank of the small Menez Gwen volcano during cruises with RV Poseidon (POS402, 2010) and RV Meteor (M82/3, 2010), and used new bathymetry and imagery data to provide first detailed information on the extents, surface morphologies, spatial patterns of the hydrothermal discharge and the distribution of dominant megafauna of five active sites. The investigated sites were mostly covered by soft sediments and abundant white precipitates, and bordered by basaltic pillows. The hydrothermally-influenced areas of the sites ranged from 59 to 200 m2. Geo-referenced photomosaics and video data revealed that the symbiotic mussel Bathymodiolus azoricus was the dominant species and present at all sites. Using literature data on average body sizes and biomasses of Menez Gwen B. azoricus, we estimated that the B. azoricus populations inhabiting the eastern flank sites of the small volcano range between 28,640 and 50,120 individuals with a total biomass of 50 to 380 kg wet weight. Based on modeled rates of chemical consumption by the symbionts, the annual methane and sulfide consumption by B. azoricus could reach 1760 mol CH4 yr−1 and 11,060 mol H2S yr−1. We propose that the chemical consumption by B. azoricus over at the Menez Gwen sites is low compared to the natural release of methane and sulfide via venting fluids.  相似文献   

6.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

7.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

8.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

9.
JGOFS-KERFIX (KERguelen point FIXe) time-series station, located south of the polar front in the Indian sector of the Antarctic Ocean, was occupied monthly between January 1990 and March 1995. Annual cycles of dissolved inorganic carbon (DIC), total alkalinity (TALK), oxygen (O2) and nutrients (nitrate, silicate, phosphate and ammonia) in the upper ocean are presented for this site. From seasonal drawdown of nutrients and DIC, we estimate a spring–summer net community production of 3.2±0.5 mol m−2 and C/N/P ratios of 100/16/1. The Si/N ratio varies between 1.8 and 3, suggesting low iron concentrations. The spring–summer biogenic silicon export derived from silicate drawdown is 1.18 mol m−2, consistent with model estimates of silicate export at this site. Seasonal and interannual variations of oxygen, nitrate and DIC due to physical and biological processes are quantified using a simple month-to-month budget formulation. From these budgets, an annual net community production of 5.7±3.3 mol m−2 yr−1 is estimated, about twice the averaged spring–summer production, indicating that, at KERFIX, there is a positive net community production throughout the year. Air–sea CO2 fluxes show that KERFIX is a strong CO2 sink for the atmosphere of 2.4–5.1 mol m−2 yr−1 in 1993, depending on the gas exchange formulation used. A 2.1–3.3 mol m−2 yr−1 outgassing of O2 is observed at KERFIX except in 1993 and 1994 where a decreasing trend of temperature induces an increase of O2 solubility.  相似文献   

10.
Interannual variability of nutrients and plankton cycles were studied at the time-series station KERFIX (50°40′S, 68°25′E) using a 1-D coupled physical-biogeochemical model that is descended from that of Pondaven et al. (1998). At KERFIX, a high half saturation constant for silicic acid uptake (KSi) and a high Si/N uptake ratio are required to reproduce the Si and N cycles. Although very high in comparison with most data from temperate systems, these values are consistent with KSi and Si/N uptake ratios measured in the Indian sector of the Southern Ocean. Past and recent finding on the role of light and iron limitation on nutrient consumption ratios might explain these “unusual” silicon uptake kinetic parameters. Comparison of model results with observations show that the model correctly reproduces the observed interannual variability of nutrients and plankton cycles at KERFIX between 1992 and 1995. Characteristic features of this region are a spring phytoplankton bloom of 1.0–1.5 mg Chlorophyll a m−3 and a net excess of silicic acid utilisation over that of nitrate. This high silicic acid utilisation leads to low Si concentrations in late summer and subsequent Si limitation of diatom growth. The interannual variability of production of silicon and nitrogen predicted by the model is 1.93±0.04 mol Si m−2 yr−1 and 1.35±0.07 mol N m−2 yr−1 (±SD). In parallel, the predicted export is 1.12±0.04 mol Si m−2 yr−1 and 0.06±0.01 mol N m−2 yr−1. It is shown that diatoms may contribute significantly to export if diatom sinking is taken into account. An interannual variability of the predicted Si and N cycles is detected. This variability is associated with changes in the mixed layer properties, which have been documented to be linked to the Pacific El Niño Southern Oscillation or displacement of the Polar Front.  相似文献   

11.
Data from the first systematic survey of inorganic carbon parameters on a global scale, the GEOSECS program, are compared with those collected during WOCE/JGOFS to study the changes in carbon and other geochemical properties, and anthropogenic CO2 increase in the Atlantic Ocean from the 1970s to the early 1990s. This first data-based estimate of CO2 increase over this period was accomplished by adjusting the GEOSECS data set to be consistent with recent high-quality carbon data. Multiple Linear Regression (MLR) and extended Multiple Linear Regression (eMLR) analyses to these carbon data are applied by regressing DIC with potential temperature, salinity, AOU, silica, and PO4 in three latitudinal regions for the western and eastern basins in the Atlantic Ocean. The results from MLR (and eMLR provided in parentheses) indicate that the mean anthropogenic CO2 uptake rate in the western basin is 0.70 (0.53) mol m?2 yr?1 for the region north of 15°N; 0.53 (0.36) mol m?2 yr?1 for the equatorial region between 15°N and 15°S; and 0.83 (0.35) mol m?2 yr?1 in the South Atlantic south of 15°S. For the eastern basin an estimate of 0.57 (0.45) mol m?2 yr?1 is obtained for the equatorial region, and 0.28 (0.34) mol m?2 yr?1 for the South Atlantic south of 15°S. The results of using eMLR are systematically lower than those from MLR method in the western basin. The anthropogenic CO2 increase is also estimated in the upper thermocline from salinity normalized DIC after correction for AOU along the isopycnal surfaces. For these depths the results are consistent with the CO2 uptake rates derived from both MLR and eMLR methods.  相似文献   

12.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

13.
A 1-D coupled physical-biogeochemical model is used to study the seasonal cycles of silicon and nitrogen in two High Nutrient Low Chlorophyll (HNLC) systems, the Antarctic Circumpolar Current (ACC) and the North Pacific Ocean, and a mesotrophic system, the North Atlantic Ocean. The biological model consists of nine compartments (diatoms, nano-flagellates, microzooplankton, mesozooplankton, two types of detritus, nitrate, ammonium and silicic acid) forced by irradiance, temperature, mixing and deep nitrate and silicic acid concentrations. At all sites, nanophytoplankton standing crop variations are low, in spite of variations in primary production, because of a “top–down” control by microzooplankton. Although nanophytoplankton sustain more than 60% of the annual primary production in these areas, their contribution to the export production does not exceed 1% of the total. The differences in the seasonal plankton cycle among these regions come mainly from differences in the dynamics of large phytoplankton (here diatoms). In the ACC, the chlorophyll maximum remains <1.5 mg m−3, as an unfavourable light/mixing regime and a likely trace-metal limitation keep diatoms from blooming. In the northeast Pacific, trace-metal limitation seems to keep diatoms from blooming throughout the year. In both these systems, light or iron limitations induce high Si/N uptake ratios. Incidentally these high Si/N uptake ratios lead to a net excess of silicic acid utilization over nitrate, and to a subsequent silicic acid limitation during the summertime. In the North Atlantic, under favourable light/mixing regime and nutrient-replete conditions at the onset of the growing period, diatoms outburst and sustain a bloom >3.5 mg Chl-a m−3. Thereafter, mesozooplankton grazing pressure and silicic acid limitation induce the collapse of the chlorophyll maximum and the persistence of lower chlorophyll concentrations in summer. Although the ACC and the North Pacific show HNLC features, they support a high biogenic silica production (1.9 and 1.07 mol Si m−2 yr−1) and export flux (0.79 and 0.61 mol Si m−2 yr−1), compared to the North Atlantic (production: 0.23 mol Si m−2 yr−1, export: 0.12 mol Si m−2 yr−1). The differences in Si production and export between the HNLC systems and the mesotrophic North Atlantic come from both higher Si concentrations and Si/N uptake ratios in the HNLC areas compared to the North Atlantic. Also, the low dissolution rate of biogenic silica compared to nitrogen degradation rate, and the inhibition of nitrate uptake by ammonium, reinforce the net excess of silicic acid utilization over nitrate. As a result, the model also illustrates the efficiency of the silica pump for the three sites: about 50% of the biogenic silica synthesized in the euphotic layer is exported out of the first 100 m, while only 4–11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

14.
Marginal seas provide a globally important interface between land and interior ocean where organic carbon is metabolized, buried or exported. The trophic status of these seas varies seasonally, depending on river flow, primary production, the proportion of dissolved to particulate organic carbon and other factors. In the Strait of Georgia, about 80% of the organic carbon in the water column is dissolved. Organic carbon enters at the surface, with river discharge and primary production, particularly during spring and summer. The amount of organic carbon passing through the Strait (∼16 × 108 kg C yr−1) is almost twice the standing inventory (∼9.4 × 108 kg C). The organic carbon that is oxidized within the Strait (∼5.6 × 108 kg yr−1) presumably supports microbial food webs or participates in chemical or photochemical reactions, while that which is exported (7.2 × 108 kg yr−1) represents a local source of organic carbon to the open ocean.  相似文献   

15.
Benthic fluxes of O2, titration alkalinity (TA), total inorganic carbon (TIC), Ca2+, NO3, NH4+, PO43−, and Si(OH)4 were measured by in situ benthic flux chamber incubations at 13 locations on the North Carolina continental slope. The majority of measurements were made at water depths of approximately 700–850 m, in the previously identified upper slope depocenter. This region is characterized by extremely high organic matter deposition rates and near saturation bottom water oxygen concentrations. Measured benthic fluxes of TA are reasonably correlated with O2 benthic fluxes. Because bottom waters are supersaturated with respect to calcite and aragonite at these shallow water depths, these results demonstrate the importance of metabolically driven dissolution in this region. Subtraction of the calcium carbonate dissolution contributions from the TIC benthic fluxes suggests rates of organic matter remineralization ranging from 0.97 to 3.9 mol C m−2 yr−1 at the depocenter sites, a factor of 3–10 greater than estimated for the adjacent continental rise and upper slope areas. Because biological primary production in the overlying waters does not follow this pattern, these extremely high values are most likely supported by lateral inputs of highly reactive organic matter. Mass balance calculations indicate that despite the oxygenated bottom water conditions, 68% of the organic nitrogen released during organic matter remineralization processes is ultimately denitrified. The release of PO43− from the depocenter sediments is equivalent to or larger than that predicted from the remineralization of Redfield organic matter. This implies either that PO43− is preferentially released in this setting and that the accumulating sediments must be depleted in PO43− relative to organic carbon or that another, non-organic, phase is contributing PO43− to the system. The molar ratio of the Si benthic flux and organic carbon remineralization rate ranges from 0.30 to 0.86. This is significantly greater than the ratio reported for most pelagic diatoms. Possible reasons for this high ratio include the deposition of benthic diatoms that may have a larger Si : C ratio than pelagic diatoms, the near-bottom lateral input of partially reworked organic matter that may have an elevated Si : C ratio relative to fresh diatoms, preferential loss of carbon in sinking particulates or the release of Si from non-opaline materials.  相似文献   

16.
Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate–methane transition at 2–4 m depth. Sulfate reduction rates were measured experimentally with 35SO42−, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments without sulfide reoxidation, modeling strongly underestimated the high reduction rates near the sediment surface. A hybrid modeling approach, in which experimentally measured rates in the upper sediment layers force a model that includes also the deeper layers, probably provides the most realistic estimate of sulfate reduction rates. Areal rates of sulfate reduction were 0.65–1.43 mmol SO42− m−2 d−1, highest in sediments just below the chemocline. Anaerobic methane oxidation accounted for 7–11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet the process was very sluggish with turnover times of methane within the sulfate–methane transition zone of 20 yr or more.  相似文献   

17.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

18.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

19.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

20.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号