首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mass-induced sea level variability and the net mass transport between Mediterranean Sea and Black Sea are derived for the interval between August 2002 and July 2008 from satellite-based observations and from model data. We construct in each basin two time series representing the basin mean mass signal in terms of equivalent water height. The first series is obtained from steric-corrected altimetry while the other is deduced from GRACE data corrected for the contamination by continental hydrology. The series show a good agreement in terms of annual and inter-annual signals, which is in line with earlier works, although different model corrections influence the consistency in terms of seasonal signal and trend.In the Mediterranean Sea, we obtain the best agreement using a steric correction from the regional oceanographic model MFSTEP and a continental hydrological leakage correction derived from the global continental hydrological model WaterGAP2. The inter-annual time series show a correlation of 0.85 and a root mean square (RMS) difference of 15 mm. The two estimates have similar accuracy and their annual amplitude and phase agree within 3 mm and 23 days respectively. The GRACE-derived mass-induced sea level variability yields an annual amplitude of 27 ± 5 mm peaking in December and a trend of 5.3 ± 1.9 mm/yr, which deviates within 3 mm/yr from the altimetry-derived estimate.In the Black Sea, the series are less consistent, with lower accuracy of the GRACE-derived estimate, but still show a promising agreement considering the smaller size of the basin. The best agreement is realized choosing the corrections from WaterGAP2 and from the regional oceanographic model NEMO. The inter-annual time series have a correlation and RMS differences of 0.68 and 55 mm, their annual amplitude and phase agree within 4 mm and 6 days respectively. The GRACE-derived seawater mass signal has an annual amplitude of 32 ± 4 mm peaking in April. On inter-annual time scales, the mass-induced sea level variability is stronger than in the Mediterranean Sea, with an increase from 2003 to 2005 followed by a decrease from 2006 to 2008.Based on mass conservation, the mass-induced sea level variations, river runoff and precipitation minus evaporation are combined to derive the strait flows between the basins and with the Atlantic Ocean. At the Gibraltar strait, the net inflow varies annually with an amplitude of 52 ± 10 × 10−3 Sv peaking end of September (1 Sv = 106 m3 s−1). The inflow through the Bosphorus strait displays an annual amplitude of 13 ± 3 ×10−3 Sv peaking in the middle of March. Additionally, an increase of the Gibraltar net inflow (3.4 ± 0.8 × 10−3 Sv/yr) is detected.  相似文献   

2.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

3.
4.
《Advances in water resources》2005,28(10):1122-1132
During the last 25 years there has been a great interest in deriving aquifer characteristics from outflow data. This analysis has been mainly based of the drainage of a horizontal aquifer after sudden drawdown, using the Boussinesq approximation. Following the general approach of Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40], it was determined that for this geometry the aquifer behavior could be characterized by dQ/dt  Q3 for small t and by dQ/dt  Q3/2 for large t. It was remarked that dQ/dt  Q for large t is often observed. In practice, it is also difficult to determine if dQ/dt  Q3 for small t because this behavior can only be observed over a very short period.Here, we present a similar analysis of aquifer behavior based on the more fundamental Laplace solution for penetrated aquifers. It has been shown that also when the drain does not fully penetrate the aquifer, the solution still produces good results [Szilagyi, J. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions. Water Resour Res 2003;39(6)]. The Laplace solution quickly shows that dQ/dt  Q for t  ∞ and dQ/dt  Q for t  0, after sudden drawdown. This analysis reconfirms previous findings concerning long-time behavior. More importantly, the analysis shows that the exponent B in dQ/dt  QB does not have a fixed limited value for short times for the given geometry. Further analysis, however, shows that under certain conditions the relation dQ/dt  Q3 is retained for 0  t < 1. Detailed examination of the Laplace solution also shows under which types of recharge dynamics a well-identifiable transition takes place between short- and long-term behavior. As long as such a clear transition exists, the aquifer characterization method proposed earlier by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40] can be applied. It is shown that for a sharp pulse input, the Laplace solution gives similar results as presented by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40]. For a smooth pulse, the transition becomes unclear. What is “smooth” and “sharp” depends on input and aquifer characteristics, whereby shallow aquifers give clearer transitions than deep aquifers for the same input. The analysis shows that when rain ceases suddenly after the aquifer has come into equilibrium with a steady rain input, a usable transition in the relation between dQ/dt and Q can be found as well. Researchers can use the present analysis to assess whether specific aquifers and recharge events can be used for the previously suggested characterization method.  相似文献   

5.
Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However, not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer insolation, and that the onset of deglacial warming at ~ 19 kyr BP is parallel in timing with other continental records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~ 15 °C at the onset of the warming to a maximum of ~ 27 °C in the early Holocene (~ 12 kyr BP), in agreement with the temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer insolation, and may contribute to a better understanding of the mechanisms controlling ice age terminations.  相似文献   

6.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

7.
Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.  相似文献   

8.
The Central American volcanic arc supplies a significant proportion of the persistent annual global sulphur dioxide emissions from volcanoes. In November/December 2003, we completed a survey of the arc section from Mombacho to San Cristóbal in Nicaragua recording individual mean fluxes of 800, 530 and 220 Mg day 1 in the plumes from San Cristóbal, Telica and Masaya, respectively. An assessment of fluxes published since 1997 along the entire Central America arc yields a mean total arc flux of SO2 of 4360 Mg day 1 or 8–16% of the annual estimated global volcanic SO2 flux to the troposphere. New field data shows that Masaya volcano continues to show stable HCl/SO2 and HF/SO2 ratios, suggesting a sustained flux of these components of ∼ 220 and 30 Mg day 1, respectively (1997 to 2004). Masaya's plume composition also appears to have been stable, between 2001 and 2003, with respect to all the particulate species measured, with significant fluxes of SO42− (4 Mg day 1), Na+ (0.9–1.3 Mg day 1) and K+ (0.7 Mg day 1). Extrapolating the Masaya plume species ratios to the entire Central American arc gives mean HCl and HF fluxes of 1300 and 170 Mg day 1 and a particulate sulphate flux of 40 Mg day 1 for 1997 to 2004, although without further understanding of the degassing processes and sources at depth of these different volatiles, these arc-scale estimates should be treated with caution. Combining our arc scale mean SO2 flux with published measurements of volcanic gas compositions with respect to CO2 and H2O allows us to estimate mean CO2 fluxes of 4400–9600 Mg day 1 and H2O fluxes of 70,000–78,000 Mg day 1 for the arc. Preliminary comparisons of these estimates of outgassing rates with published volatile input fluxes into the Central American subduction zone, suggest that Cl is more efficiently recycled through the subduction zone than CO2. The results for H2O are inconclusive.  相似文献   

9.
A major reduction in summer temperatures during a Middle Pleistocene glacial cycle caused the most extensive glaciation recorded in the Mediterranean region. Glaciers in the mountains of Greece formed during marine isotope stage (MIS) 12 (474 000–427 000 years BP) under climatic conditions characterised by mean summer temperatures at least 11 °C cooler than today and annual precipitation of ≤ 2300 mm at the equilibrium line altitude (1741 m a.s.l.). This represents the coldest mean summer temperatures recorded in Greece during at least the last 430 000 years. Later Pleistocene glaciations (MIS 6 and 5d-2) were characterised by warmer summer temperatures and higher annual precipitation.  相似文献   

10.
We have combined tensor radio magnetotelluric- (RMT, 15–250 kHz) and controlled source tensor magnetotelluric (CSTMT, 1–12 kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40 km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant.The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4–180 kHz could be used. The four lowest frequencies of CSTMT in the range of 1–2.8 kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100 Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1° on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers.The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20 m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40–400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40 m and a width of several hundred metres. This is a potential aquifer that extends in approximately N–S direction for some kilometres.  相似文献   

11.
The lack of high resolution precipitation data has posed great challenges to the study and management of extreme rainfall events. Satellite-based rainfall products with large areal coverage provide a potential alternative source of data where in situ measurements are not available. However, the mismatch in scale between these products and model requirements has limited their application and demonstrates that satellite data must be downscaled before being used. This study developed a statistical spatial downscaling scheme based on the relationships between precipitation and related environmental factors such as local topography and pre-storm meteorological conditions. The method was applied to disaggregate the Tropical Rainfall Measuring Mission (TRMM) 3B42 products, which have a resolution of 0.25° × 0.25°, to 1 × 1 km gridded rainfall fields. The TRMM datasets in accord with six rainstorm events in the Xiao River basin were used to validate the effectiveness of this approach. The downscaled precipitation data were compared with ground observations and exhibited good agreement with r2 values ranging from 0.612 to 0.838. In addition, the proposed approach provided better results than the conventional spline and kriging interpolation methods, indicating its promise in the management of extreme rainfall events. The uncertainties in the final results and the implications for further study were discussed, and the needs for additional rigorous investigations of the rainfall physical process prior to institutionalizing the use of satellite data were highlighted.  相似文献   

12.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   

13.
This study examines the recent evolution of the Greenland ice sheet and its six major drainage basins. Based on laser altimetry data acquired by the Ice, Cloud and Land Elevation Satellite (ICESat), covering the period September–November 2003 to February–March 2008, ice surface height changes and their temporal variations were inferred. Our refined repeat track analysis is solely based on ICESat data and is independent of external elevation models, since it accounts for both ice height changes and the local topography. From the high resolution ice height change pattern we infer an overall mean surface height trend of −0.12 ± 0.006 m yr−1. Furthermore, the largest changes could be identified at coastal margins of the ice sheet, exhibiting rates of more than −2 m yr−1. The total ice volume change of the entire ice sheet amounts to −205.4 ± 10.6 km3 yr−1. In addition, we assessed mass changes from 78 monthly Gravity Recovery and Climate Experiment (GRACE) solutions. The Release-04 gravity field solutions of GeoForschungsZentrum Potsdam cover the period between August 2002 and June 2009. We applied an adjusted regional integration approach in order to minimize the leakage effects. Attention was paid to an optimized filtering which reduces error effects from different sources. The overall error assessment accounts for GRACE errors as well as for errors due to imperfect model reductions. In particular, errors caused by uncertainties in the glacial isostatic adjustment models could be identified as the largest source of errors. Finally, we determined both seasonal and long-term mass change rates. The latter amounts to an overall ice mass change of −191.2 ± 20.9 Gt yr−1 corresponding to 0.53 ± 0.06 mm yr−1 equivalent eustatic sea level rise. From the combination of the volume and mass change estimates we determined a mean density of the lost mass to be 930 ± 11 kg m−3. This value supports our applied density assumption 900 ± 30 kg m−3 which was used to perform the volume–mass-conversion of our ICESat results. Hence, mass change estimates from two independent observation techniques were inferred and are generally in good agreement.  相似文献   

14.
Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ~ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ~ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about ? 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ~ 8 Ma in the northern Altiplano and by ~ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and established a latitudinal rainfall gradient similar to modern.  相似文献   

15.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

16.
《Marine pollution bulletin》2009,58(6-12):801-806
The common mussel Mytilus galloprovincialis was selected as unique biomonitor species to implement a regional monitoring programme, the CIESM Mediterranean Mussel Watch (MMW), in the Mediterranean and Black Seas. As of today, and upon standardization of the methodological approach, the MMW Network has been able to quantify 137Cs levels in mussels from 60 coastal stations and to produce the first distribution map of this artificial radionuclide at the scale of the entire Mediterranean and Black Seas. While measured 137Cs levels were found to be very low (usually <1 Bq kg−1 wet wt) 137Cs activity concentrations in the Black Sea and North Aegean Sea were up to two orders of magnitude higher than those in the western Mediterranean Basin. Such effects, far from representing a threat to human populations or the environment, reflect a persistent signature of the Chernobyl fallout in this area.  相似文献   

17.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

18.
In the central Western Alps, a combined structural, petrological and 40Ar–39Ar geochronological study of the Modane-Aussois and Southern Vanoise units yields important constraints on the timing of deformation and exhumation of the Briançonnais zone. These data help to decipher the respective roles of oceanic subduction, continental subduction and collision in the burial and exhumation of the main units through time. In the Modane-Aussois unit top to the NW thrusting (D1) was followed by top to the east shearing (D2) interpreted by some as normal faulting and by others as backthrusting. Pseudosection calculations imply that D1 deformation occurred at 1.0 ± 0.1 GPa and 350 ± 30 °C. Analysis of chlorite–phengite pairs yield P–T estimates between 0.15 and 0.65 GPa and between 220 and 350 °C for the D2 event. Phengites along the D1 schistosity (sample M80) yields an 40Ar–39Ar age of 37.12 ± 0.39 Ma, while D2 phengites yield ages of 35.42 ± 0.38 (sample M173) and 31.60 ± 0.33 Ma (sample M196). It was not possible to test whether these ages are altered by excess argon or not. Our interpretation is that the D1/D2 transition occurred at ∼37 Ma at the beginning of decompression, and that D2 lasted until at least ∼32 Ma. Pseudosection calculation suggests that the Southern Vanoise unit was buried at 1.6 ± 0.2 GPa and 500–540 °C. D1 deformation occurred during exhumation until 0.7–10.5 GPa and 370 ± 30 °C. Published ages suggest that D1 deformation possibly started at ∼50 Ma and lasted until ∼37 Ma. D2 deformations started at P–T conditions close to that recorded in Modane-Aussois unit and lasted until 0.2 ± 0.1 GPa and 280 ± 30 °C at ∼28 Ma. The gap of 0.6 ± 0.3 GPa and 150 ± 130 °C between peak metamorphic conditions in the two units was concealed by thrusting of the South Vanoise unit on top of the Modane-Aussois unit during D1 Deformation. Top to the east deformation (D2) affects both units and is interpreted as backthrusting.Based on these data, we propose a geodynamic reconstruction where the oceanic subduction of the Piedmont unit until ∼50 Ma, is followed by its exhumation at the time of continental subduction of the continental Southern Vanoise unit until ∼45 Ma. The Southern Vanoise is in turn underthrusted by the Modane-Aussois unit until ∼37 Ma (D1). Between 37 and 31 Ma the Modane-Aussois and Southern Vanoise units exhume together during backthrusting to the east (D2). This corresponds to the collision stage and to the activation of the Penninic Thrust. In the ∼50 Ma to ∼31 Ma time period the main thrusts propagated westward as the tectonic context switched from oceanic to continental subduction and finally to collision. During each stage, external units are buried while internal ones are exhumed.  相似文献   

19.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   

20.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号