首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Estimates of sediment yield are essential in water resources analysis, modelling and engineering, in investigations of continental denudation rates, and in studies of drainage basin response to changes in climate and land use. The availability of high resolution, global environmental datasets offers an opportunity to examine the relationships between specific sediment yield (SYsp) and drainage basin attributes in a geographical information system (GIS) environment. This study examines SYsp at 14 long‐term gauging stations within the upper Indus River basin. Twenty‐nine environmental variables were derived from global datasets, the majority with a 1 × 1 km resolution. The SYsp ranges from 194 to 1302 t km?2 yr?1 for sub‐basins ranging from 567 to 212 447 km2. The high degree of scatter in SYsp is greatly reduced when the stations are divided into three groups: upper, glacierized sub‐basins; lower, monsoon sub‐basins; and the main Indus River. Percentage snow/ice cover (LCs) emerges as the single major land cover control for SYsp in the high mountainous upper Indus River basin. A regression model with percentage snow/ice cover (LCs) as the single independent variable explains 73·4% of the variance in SYsp for the whole Indus basin. A combination of percentage snow/ice cover (LCs), relief and climate variables explains 98·5% of the variance for the upper, glacierized sub‐basins. For the lower monsoon region, a regression model with only mean annual precipitation (P) explains 99·4% of the variance. Along the main Indus River, a regression model including just basin relief (R) explains 92·4% of the variance in SYsp. Based on the R2adj and P‐value statistics, the variables used are capable of explaining the majority of variance in the upper Indus River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The behaviour of suspended sediment in rivers is often a function of energy conditions, i.e. sediment is stored at low flow and transported under high discharge conditions. The timing of maximum sediment transport can, however, also be related to mixing and routing of water and sediment from different sources. In this study suspended sediment transport was studied in the River Rhine between Kaub and the German–Dutch border. As concentrations decrease over a runoff season and as the relationship between water discharge and suspended sediment concentrations during most floods is characterized by clockwise hysteresis, it is concluded that sediment depletion occurs during a hydrological year and during individual floods. However, analyses of the sediment contribution from the River Mosel indicate that clockwise hysteresis may result from sediment depletion as well as from early sediment supply from a tributary. Thus, although the suspended sediment behaviour in the downstream part of the River Rhine is partly a transport phenomenon related to energy conditions, mixing and routing of water from different sources also plays an important role. Suspended sediment transport during floods was modelled using a ‘supply‐based’ model. Addition of a sediment supply term to the sediment rating curve leads to a model that produces better estimates of instantaneous suspended sediment concentrations during high discharge events. A major constriction of the model is that it cannot be used to predict suspended sediment concentrations as long as the amount of sediment in storage and the timing of sediment supply are unknown. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Factors controlling sediment yield in China's Loess Plateau   总被引:2,自引:0,他引:2  
The Loess Plateau in China, an area with some of the highest sediment yield in the world, contributes predominant proportion of the sediments found in the Yellow River. We examined sediment yield and its control variables in the plateau based on a multi‐year dataset from 180 gauging stations in areas varying in size from 102 to 104 km2. Various morphometric, hydrologic, climatic and land cover variables were estimated in order to understand and predict the variations in sediment yield. The results show a spatial pattern of sediment yield exhibiting an obvious zonal distribution and a coupling between precipitation and vegetation cover that fits the Langbein–Schumm law. A critical threshold of precipitation and vegetation cover was observed among the relationships of sediment yield and precipitation/vegetation cover. A multiple regression equation with three control variables, i.e. vegetation cover, percentage of cultivated loess and annual runoff, explains 65% of the total variation in sediment yield. For the loess dominated basins, where the cultivated loess accounts for more than 60% of the total area, annual runoff was the dominant variable, explaining 76% of the observed variation in sediment yield. The established equation could be a valuable tool for predicting total sediment yield in the Loess Plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

6.
Functional (regression) and cause-and-effect analytical methods were employed in the investigation of factors controlling single-value sediment–discharge relationships for individual hydrological events in the Fraser River Basin. Of 1025 hydrological events identified in the 97 years of the 9-stations discharge record monitored by the Water Survey of Canada (1960–1988), 49 were associated with linear, non-linear (concave and convex) sediment rating curves. Analysis revealed that time of events offered a partial explanation for the occurrence of single-valued curves because events occurring in isolation or in quick succession did not always produce single-valued curves owing to variations in hydrograph characteristics and temporal and spatial peak attenuation factors. Hydrologically, linear and non-linear sediment rating curves were distinguished by the influence of preceding discharge or antecedent moisture, which tends to generate quick or delayed runoff, thereby causing rapid or slow increases in sediment concentration in concert with discharge changes. Hydraulically, linear curves were shown to be controlled by rates of stream bed scour (rising stage) similar to those for channel filling (falling stage); concave curves by rates of scouring (rising stage) similar to those of filling but different from those of rescouring (falling stage); and convex curves by rates of filling and scouring (rising stage) different from those of filling and rescouring (falling stages), all in relation to the timing of the exceedance of the threshold discharge for stream bed scour. Meteorologically, bed scour and fill approximately coincided with the timing of precipitation, if any, on the rising and/or falling stages under subzero (T≤0 °C), low (1≤T≤9 °C) and moderate (10≤T≤19 °C) temperature conditions. It is concluded that a combination of temporal, spatial, hydrological, hydraulic and meteorological factors control variations in sediment concentration during single hydrological events on the Fraser River in a complex fashion. Multivariate analysis of these factors should greatly improve prediction of sediment transport in the Fraser River Basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

8.
Observations of suspended sediment concentration and discharge at two sites on the proglacial river network draining from a predominantly cold-based, High-Arctic glacier (Austre Brøggerbreen) are described. Analysis of these observations illustrates: (i) the relatively low suspended sediment yield from this basin in comparison with many other glacier basins reported in the open literature; (ii) sustained and possibly increasing availability of suspended sediment to the fluvial system as the ablation season progresses; and (iii) the role of the proglacial sandur as both a sediment source and sink. Field observations coupled with the results of the data analysis are used to make inferences concerning the changing nature and relative importance of sediment sources within the basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Bedload transport measurements were made in a braided reach of the Onyx River, Wright Valley, Antarctica, during summer 1984/85. Transport was predominantly of sand in the form of dunes, which moved in a band down the centre of the channels, the perimeters of which were composed of a gravel pavement created during short duration high flows in earlier years. Transport rates at-a-point and past-a-cross-section were highly variable in space and time, even under conditions of constant discharge, and it was inferred that many factors other than hydraulic conditions—particularly sediment supply—control transport rates. An empirical power function relationship between sediment discharge and water discharge was used to predict an average annual total sediment discharge of 3400 t y?1 past the study reach. This gives a specific sediment yield of 5.9 t km?2 · y?1, which is two orders of magnitude less than values for Arctic and Alpine proglacial rivers, and confirms earlier conclusions that sedimentation rates on Antarctic sandur are much lower than in the arctic.  相似文献   

10.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
12.
An Erratum has been published for this article in Earth Surface Processes and Landforms 29(13) 2004, 1707. In the semi‐arid Arroyo Chavez basin of New Mexico, a 2·28 km2 sub‐basin of the Rio Puerco, we contrasted short‐term rates (3 years) of sediment yield measured with sediment traps and dams with long‐term, geologic rates (~10 000 years) of sediment production measured using 10Be. Examination of erosion rates at different time‐scales provides the opportunity to contrast the human impact on erosion with background or geologic rates of sediment production. Arroyo Chavez is grazed and we were interested in whether differences in erosion rates observed at the two time‐scales are due to grazing. The geologic rate of sediment production, 0·27 kg m?2 a?1 is similar to the modern sediment yields measured for geomorphic surfaces including colluvial slopes, gently sloping hillslopes, and the mesa top which ranged from 0·12 to 1·03 kg m?2 a?1. The differences between modern sediment yield and geologic rates of sediment production were most noticeable for the alluvial valley ?oor, which had modern sediment yields as high as 3·35 kg m?2 a?1. The hydraulic state of the arroyo determines whether the alluvial valley ?oor is aggrading or degrading. Arroyo Chavez is incised and the alluvial valley ?oor is gullied and piped and is a source of sediment. The alluvial valley ?oor is also the portion of the basin most modi?ed by human disturbance including grazing and gas pipeline activity, both of which serve to increase erosion rates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding the carbon cycle of the Han River system in Korea is of prime interest in managing and preserving this valuable water resource for more than 20 million residents in the area. As a part of a comprehensive carbon cycling study for the Han River system, this report focuses on the carbon isotope compositions of dissolved inorganic carbon (DIC) in its two major tributaries, the North and the South Han Rivers. The major difference in carbonate chemistry of the tributaries originates primarily from the lithology of the catchment areas. The South Han River, draining a carbonate‐dominant terrain, has much higher alkalinities and DIC concentrations, whereas the lower concentrations in the North Han River indicate little influence of carbonate weathering. Likewise, δ13CDIC values in the South Han River indicate that the DIC input from the carbonate rocks is important in controlling carbon isotope ratios of DIC. For the North Han River, the oxidation of organic material influences the amount of riverine DIC and δ13CDIC values to a greater extent. Overall, remarkable seasonal and spatial variations of river chemistry and carbon isotope compositions of DIC reflect the variability in geo‐hydrologic characteristics, in the water regime, and in metabolic activities in the river water and/or the drainage areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
珠江流域西江支流贺江浮游藻类群落特征及水质分析   总被引:2,自引:2,他引:2  
为了解珠江流域西江支流贺江浮游藻类的分布并评价其水质情况,于2013年丰水期和枯水期对贺江的浮游藻类群落结构进行调查和分析,结果表明:调查期间共检出浮游藻类7门130种,其中丰水期7门63种,枯水期5门103种,浮游藻类群落组成以绿藻门、硅藻门和蓝藻门为主,丰水期绿藻门居多,硅藻门次之,藻细胞丰度平均值为2.13×106cells/L;枯水期硅藻门最多,藻细胞丰度平均值为3.71×106cells/L;优势种主要有水华微囊藻、卷曲鱼腥藻、小颤藻、啮蚀隐藻、短小舟形藻、变异直链藻、颗粒直链藻、四尾栅藻、集星藻、小球衣藻和小球藻.RDA分析表明,影响贺江浮游藻类群落分布的主要环境因子是氮、磷营养盐,综合营养状态指数显示贺江处于中营养水平.  相似文献   

15.
This study analyses the changes in sediment transport regimes in the middle Yellow River basin (MYRB) using sediment rating parameters. Daily streamflow and suspended sediment concentration data were collected at 35 hydrological stations from the 1950s to 2016, which can be divided into three periods based on the type and intensity of human activities: the base stage before 1970, the restraining stage from 1971 to 1989, and the restoration stage after 2002. Data within each period were fitted by log‐linear sediment rating curves and the sediment rating parameters were utilized to analyse the spatial and temporal variations in sediment transport regimes. The results show that sediment rating parameters are indicative of sediment transport regimes. In the base stage and the restraining stage, the hydrological stations can be categorized into four groups based on their locations on the rating parameter plot. The stations with small drainage basins were characterized by the highest sediment transport regime, followed by those located in the coarse‐particle zone, the loess zone, and the mountainous/forest zone. In the restoration stage, the difference in sediment transport regimes between different geomorphic zones became less distinguishable than in previous stages. During the transition from the base stage to the restraining stage, sediment rating parameters showed no significant changes in sediment transport regimes in all four geomorphic groups. During the transition from the restraining stage to the restoration stage, significant changes were observed in the coarse‐particle zone and the mountain/forest zone, indicating that the revegetation programme and large reservoirs imposed a stronger influence on sediment transport regimes in these two zones than in the rest of the MYRB. This study provides theoretical support for evaluating sediment transport regimes with sediment rating parameters.  相似文献   

16.
The Selenga River is the main artery feeding Lake Baikal. It has a catchment of ~450000 km² in the boundary region between Northern Mongolia and Southern Siberia. Climate, land use and dynamic socioeconomic changes go along with rising water abstractions and contaminant loads originating from mining sites and urban wastewater. In the future, these pressures might have negative impacts on the ecosystems of Lake Baikal and the Selenga River Delta, which is an important wetland region in itself and forms the last geobiochemical barrier before the Selenga drains into Lake Baikal. The following study aims to assess current trends in hydrology and water quality in the Selenga-Baikal basin, identify their drivers and to set up models (WaterGAP3 framework and ECOMAG) for the prediction of future changes. Of particular relevance for hydrological and water quality changes in the recent past were climate and land use trends as well as contaminant influx from mining areas and urban settlements. In the near future, additional hydrological modifications due to the construction of dams and abstractions/water diversions from the Selenga’s Mongolian tributaries could lead to additional alterations.  相似文献   

17.
It is expected that climate warming will be experienced through increases in the magnitude and frequency of extreme events, including droughts. This paper presents an analysis of observed changes and future projections for meteorological drought for four different time scales (1 month, and 3, 6 and 12 months) in the Beijiang River basin, South China, on the basis of the standardized precipitation evapotranspiration index (SPEI). Observed changes in meteorological drought were analysed at 24 meteorological stations from 1969 to 2011. Future meteorological drought was projected based on the representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, as projected by the regional climate model RegCM4.0. The statistical significance of the meteorological drought trends was checked with the Mann–Kendall method. The results show that drought has become more intense and more frequent in most parts of the study region during the past 43 years, mainly owing to a decrease in precipitation. Furthermore, long-term dryness is expected to be more pronounced than short-term dryness. Validation of the model simulation indicates that RegCM4.0 provides a good simulation of the characteristic values of SPEIs. During the twenty first century, significant drying trends are projected for most parts of the study region, especially in the southern part of the basin. Furthermore, the drying trends for RCP8.5 (or for long time scales) are more pronounced than for RCP4.5 (or for short time scales). Compared to the baseline period 1971–2000, the frequency of drought for RCP4.5 (RCP8.5) tends to increase (decrease) in 2021–2050 and decrease (increase) in 2051–2080. The results of this paper will be helpful for efficient water resources management in the Beijiang River basin under climate warming.  相似文献   

18.
鄱阳湖区乐安河流域营养盐负荷影响因素分析   总被引:2,自引:2,他引:2  
夏雨  鄢帮有  方豫 《湖泊科学》2015,27(2):282-288
鄱阳湖作为中国最大的淡水湖,2000年后其水系和湖体水质总体都呈下降趋势.以鄱阳湖流域内的典型流域——乐安河流域为例,初步分析了流域内面源污染的主要影响因素、主要污染成分及其对污染程度的影响.研究表明,氮比磷对水质影响更明显,氮的3种物质形态中硝态氮(NO-3-N)含量最高,对水质影响也最大.根据总氮和NO-3-N浓度差异可将流域内的水质分为4个区域,从上游到下游富营养化程度不断升高,最上游为Ⅱ类水质,而最下游的总氮浓度接近Ⅳ类水标准.3年监测期内降雨量和强度的变化导致氮、磷浓度的巨大差异,林地对面源污染物有较好的消减作用,而农田的氮、磷流失是营养物产生的主要来源,人类活动特别是农事活动对土壤氮、磷的干扰是导致氮、磷浓度年内变化的主要原因.因此,削减流域内营养盐的产生、减少入湖河流携带污染物总量是改善鄱阳湖水质的重要途径.  相似文献   

19.
Abstract The suspended sediment load in the middle Yellow River basin (YRB) cannot be well predicted by capacity‐based transport formulas because a large fraction of suspended sediment load is composed of wash load. This study evaluated the spatial variations of sediment rating curves (SRCs) in the middle YRB. Both power and linear SRCs were used to fit daily flow and suspended sediment concentration (SSC) historical data at 49 gauging stations throughout the middle YRB. The spatial variation in regression coefficients was investigated, and the relationship between regression coefficients and the physical characteristics of watersheds was discussed. The results indicate that SRC regression coefficients vary with drainage area and basin slope, but their responses to these parameters are remarkably different in watersheds with different underlying surfaces, which indicates the significance of sediment availability, erodibility, and grain size distribution. For power SRCs representing sediment transport in unsaturated flows, the regression coefficients are more closely correlated with the drainage area in loess regions and with the basin slope in rock mountain regions. For linear SRCs representing sediment transport in saturated flows, saturated SSCs vary with coarse (particle size > 0.05 mm) and fine (particle size < 0.01 mm) fractions in suspended sediment. The maximum saturated SSC among the different gauging stations is associated with the optimal grain size composition of suspended sediment, which has been proposed for loess regions in previous studies. This study provides theoretical support for estimating the regression parameters for sediment transport modelling, especially in ungauged basins.  相似文献   

20.
A spatially distributed snow model procedure for estimating snow melt, snow water equivalent and snow cover area is formulated and tested with data from the American River basin in California’s Sierra Nevada. An adaptation of the operational National Weather Service snow accumulation and ablation model is used for each model grid cell forced by spatially distributed precipitation and temperature data. The model was implemented with 6-hourly time steps on 1 km2 grid cells for the snow season of 1999–2003. Temperature is spatially interpolated using the prevailing lapse rate and digital terrain elevation data. Precipitation is spatially interpolated using regional climatological analyses obtained from PRISM. Parameters that control snow melt are distributed using ground surface aspect. The model simulations are compared with data from 12 snow-sensors located in the basin and the daily 500-m snow cover extent product from the MODIS/Terra satellite mission. The results show that the distribution of snow pack over the area is generally captured. The snow pack quantity compared to snow gauges is well estimated in high elevations with increasing uncertainty in the snow pack at lower elevations. Sensitivity and uncertainty analyses indicate that the significant input uncertainty for precipitation and temperature is primarily responsible for model errors in lower elevations and near the snow line. The model is suitable for producing spatially resolved realistic snow pack simulations when forced with operationally available observed or predicted data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号