首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We provide two new determinations of the oxygen isotopic composition of seawater during the last glacial maximum (LGM). High-resolution oxygen isotopic measurements were made on interstitial waters from Ocean Drilling Program (ODP) Sites 1168 and 1170 in the southeast Indian Ocean sector of the Southern Ocean. We use a diffusion-advection numerical model to calculate the glacial-interglacial change in bottom-water δ18Osw from the pore water δ18O profiles; the first such determinations from this part of the oceans. Statistical analyses of the model runs indicate that Circumpolar Deep Water (CDW) δ18Osw changed by 1.0-1.1±0.15‰ since the last glacial maximum (LGM). Our results are consistent with a previous calculation from a South Atlantic Southern Ocean location (ODP Site 1093) also situated within CDW. The new values determined in this study, together with previous estimates, are converging on a global average Δδ18Osw of 1.0-1.1‰.Using the calculated bottom-water δ18Osw, we have extracted the temperature component from the benthic foraminiferal δ18O record at Sites 1168 and 1170. Since the LGM, bottom waters at these two sites warmed by 2.6 and 1.9°C, respectively. The absolute temperature estimates for the LGM (−0.5°C [Θ=−0.6°C] at Site 1168 and −0.2°C [Θ=−0.4°C] at Site 1170) are slightly warmer than those reported from previous studies using the same technique, but are consistent with more homogenous deep-ocean temperatures during the LGM relative to the modern.  相似文献   

2.
We present a time series of carbon and oxygen stable isotope records of the last 30?000 14C years throughout the last glacial-postglacial cycle from western Qinghai-Xizhang (Tibet) Plateau. A 20-m core drilled in the south basin of Zabuye Salt Lake was analyzed for inorganic and organic carbon and total sulfur contents, δ13C and δ18O values of carbonates. Our results indicate that climatic changes have led to a drastic negative shift of stable isotope ratios at the transition between the Last Full Glacial and the postglacial phase during Later Pleistocene times (∼16.2 kyr BP), and a rapid positive shift at the transition from Pleistocene to Holocene (∼10.6 kyr BP). The first shift is marked by the drop of δ18Ocarb values of about 10‰ (from +2 to −8‰) and δ13Ccarb values of about 3‰ (from 5 to 2‰). The second shift which occurred at the transition from Pleistocene to Holocene was of similar magnitude but in the opposite direction. Isotope data, combined with total organic and inorganic carbon contents and the lithological composition of the core, suggest this lake was an alluvial pre-lake environment prior to ca. 28 14C kyr BP. During ca. 28-16.2 14C kyr BP, Zabuye Lake was likely a moderately deep lake with limited outflow. The cool and arid glacial climate led the lake level to drop drastically. Extended residence time overwhelmed the lower temperature and caused a steady increase of δ13Ccarb and δ18Ocarb values and total inorganic carbon content in the sediments. During ca. 16.2-10.6 14C kyr BP, this lake probably overflowed and received abundant recharge from melting glaciers when the deglaciation was in its full speed. A spike of markedly enhanced δ13Ccarb and δ18Ocarb is seen at ∼11.5 kyr BP, probably due to the isotopic effects left behind by the short but severe Younger Dryas (YD) event. After ca. 10.6 14C kyr BP, Zabuye Lake probably closed its surface outflow, due to strong desiccation and drastic climate warming. The Early and Middle Holocene were characterized by unstable climatic conditions with alternating warmer/cooler episodes as indicated by the severe fluctuations of total organic carbon, δ13C and δ18O values. A hypersaline salt lake environment was finally formed at Zabuye after ∼5 14C kyr BP when the mirabilite and halite concentrations steadily increased and became the dominant minerals in the sediments. Severe imbalance of inflow/outflow resulted in the drastic increase of total sulfur, δ13Ccarb and δ18Ocarb values and dominance of halite in the lake since ca. 3.8 kyr BP to present.  相似文献   

3.
Based on the oxygen and carbon stable isotopic records of benthic foraminifera in nine deep-sea cores of the South China Sea (SCS), the bathymetric profiles of δ18O and δ13C since the last glacial maximum (LGM) are preliminarily established. The bathymetric gradients of deep-water δ18O and δ13C in the SCS are obviously greater during the LGM than during the Holocene, showing the existence of the deep thermocline and nutricline at water depth of about 2 000 m. Particularly, the differences in δ18O and δ13C between the LGM and Holocene, from which the ice-volume effect and the global mean shift have been subtracted respectively, are positive values at water depths of 1 000–2 500 m in the SCS. This indicates the existence of deep-water mass with relatively cool temperature or higher salinity, better ventilation and more δ13C within the water depth range of the SCS during the LGM, which is distinctly different from that at present. These changes further confirm the existence of the glacial “North Pacific Deep Water” which, however, is possibly confined to the water depth range of 1 000–2 500 m. Project supported by the National Natural Science Foundation of China (Grant Nos. 49576286 and 49732060).  相似文献   

4.
The El Niño–Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of planktic foraminifera from a sediment core in the western Pacific Ocean. At the centennial scale, variations in the stable oxygen isotope signal (δ18O) are thought be a representation of ENSO variability, although an imprint of local conditions cannot be entirely excluded. The record for the early Holocene (10.3–6 ka BP) shows, in comparison with the mid- to late Holocene, small amplitude variations in the δ18O record of up to 0.3‰ indicating relatively stable and warm sea surface conditions. The mid- to late Holocene (6–2 ka BP) exemplified higher variability in δ18O and thus in oceanic IPWP conditions. Climatically, we interpret this change (5.5–4.2 ka BP) as a phenomenon induced by variability in frequency and/or intensity changes of El Niño. In the period 4.2–2 ka BP we identified several periods, centred on 1.9, 2.1, 2.7, 3.3, 3.7 and 4.2 ka BP, with in general heavy δ18O values. During these periods, the IPWP was relocated to a more eastward position, enhancing the susceptibility for El Niño-like conditions at the core site. Over the last 2000 yr precipitation increased in the area as a response to an increase in Asian monsoon strength, resulting in a freshening of the surface waters. This study corroborates previous findings that the present-day ENSO activity started around 5.5 ka BP.  相似文献   

5.
We have constructed a high-resolution Bayesian sedimentation model spanning the last 5500 years based on 25 AMS radiocarbon dated sediments of bulk organic matter (OM) sampled from the NW Black Sea anoxic waters of the continental slope. The corrections for the 14C ages due to marine reservoir effect (MRE) and detritus organic carbon are correlated with exogenous information such as 210Pb dating, metallurgy pollution and human-induced soil erosion, highlighting the Danube influence on the geochemistry and chronology of the NW Black Sea sediments through the input of terrigenous organic matter. The results show excellent agreement with some of the previous studies, supporting a total age offset for the bulk OM of 60 years as MRE and 580 years as detritus organic carbon influence. The revisited chronology pinpoints the first and second invasion of the coccolithophores Emiliania huxleyi at 2524 ± 87 and 625 ± 65 years cal. BP. Sedimentation rate shows an increase of about three times with the starting of the late Medieval, which correspond to the highest observed sediment discharge of the Danube as are considered the last 500-300 years. This type of high-resolution sedimentation model is an important step for constructing the carbon budget in bottom waters of variable oxygen concentration.  相似文献   

6.
To constrain short-term changes of climate and oceanography in the northern South China Sea(SCS)over interglacial marine isotope stage(MIS)5.5,we studied planktic and benthic 18O records of seven marine sediment cores with a time resolution of70–700 yr.Using 6–8 tie points the planktic records were tuned to the U/Th chronology of speleothem 18O records in China and Europe.The last occurrence of pink Globigerinoides ruber marks the top of Heinrich stadial 11(HS-11)near 128.4 ka.HS-11 matches a 2300-yr long positive 18O excursion by 1.5/0.8‰both in planktic and benthic 18O records.Hence half of the planktic 18O signal was linked to increased upwelling of18O-and12C-enriched deep waters in the southwestern SCS.The increase was possibly linked to a strengthened inflow of Pacific deep waters through the Bashi Strait,that form a boundary current along the northern slope of the SCS,building a major sediment drift.At its lower margin near 2300–2400 m water depth(w.d.)Parasound records reveal a belt of modern erosion.At the end of glacial termination 2,stratigraphic gaps deleted HS-11 in core MD05-2904 and subsequent peak MIS 5.5 at ODP Site 1144.Likewise hiatuses probably earmarked all preceding glacial terminations at Site 1144 back to 650 ka.Accordingly,boundary current erosion then shifted~300 m upslope to~2040–2060 m w.d.These vertical shifts imply a rise in boundary current buoyancy,that in turn may be linked to transient events of North Pacific deepwater formation similar to that traced in SCS and North Pacific paleoceanographic records over glacial termination 1.  相似文献   

7.
Oxygen and hydrogen isotopic compositions were measured on 12 serpentine and 2 actinolite samples from the Troodos ophiolite complex, Cyprus. The single analyzed antigorite(δD= ?60, δ18O= 7.1) is isotopically similar to all previously analyzed antigorites from ultramafic bodies. However, although their D/H ratios are relatively “normal”(δD= ?70to?92), the δ18O values of most of the Troodos lizardite-chrysotile serpentines (+12.6 to +14.1) are much higher than the 2.0–9.3‰ range typically found in such serpentines. Such high δ18O values have previously been found only in the serpentine-like mineraloids termed “deweylites”, which apparently formed at Earth-surface temperatures, and in a single sample from Vourinos, Greece that is in contact with high-18O limestone. The Troodos lizardite-chrysotile samplescannot have formed by reaction with heated ocean waters, but instead must have formed in contact with large amounts of some type of meteoric, metamorphic, or formation water, either (1) at very low temperatures in a near-surface environment, or (2) at about 100°C from waters that were abnormally enriched in18O18O ≈ +4 to +8). The latter possibility seems most plausible inasmuch as extensive evaporites were deposited throughout the Mediterranean Sea during the late Miocene, and this would have been accompanied by strong18O enrichments of the local meteoric waters. Heated ocean waters, however, probably were responsible for the formation of the actinolitic amphiboles18O= 4.6 to 5.5; δD= ?51to?46) from the gabbro and ultramafic zones in the Troodos complex. The amphiboles must have formed at considerably higher temperatures and at an earlier stage than the lizardite-chrysotile serpentinization.  相似文献   

8.
A new oxygen isotope record is reported from a stalagmite collected in the Argentarola Cave located on the Tyrrhenian coast of Italy. As shown from observations and numerical modeling of δ18O in modern precipitation, the recorded δ18O variability for this zone is dominated by the amount of precipitation (so-called ‘amount effect’). The δ18O profile measured in the stalagmite is characterized by a prominent negative excursion (ca. 2-3‰) between 180 and 170 kyr BP. This paleoclimatic feature is interpreted as being due to a relatively wet period which occurred during the penultimate glacial period, more precisely, during Marine Isotope Stage 6.5. This pluvial phase is shown to correspond chronologically to the deposition of the sapropel event 6 (S6). Although this particular sapropel event occurred during a cold phase, the δ18O excursion is similar to those corresponding to other sapropels (S4, S3 and S2). The evidence for humid conditions during S6 in the western Mediterranean basin agrees with previous studies based on deep-sea sediment cores. Taken collectively, the data suggest that during sapropel events dilution of ocean surface waters was not restricted to the output of the river Nile but was rather widespread over the entire Mediterranean Sea due to increased rainfall.  相似文献   

9.
From the last deglaciation to the Holocene, the Greenland Ice Core (GISP2) δ 18O records as well as the records of ice-rafted debris on the surface of the North Atlantic have revealed a succession of sudden cooling events on the centennial to millennial scales. However, the temperature proxy records are rarely studied systematically and directly to ensure that this air temperature cooling pattern simultaneously existed in the East Asian Region, in addition to the repeated pattern occurring in the Greater Atlantic Region. A peat cellulose δ 18O temperature proxy record proximately existing for 14000 years was picked up from the Hani peat in Jilin Province, China. It suggests by comparison that the sudden cooling events, such as the Older Dryas, Inter-Allerød, Younger Dryas, and nine ice-rafted debris events of the North Atlantic, are almost entirely reiterated in the temperature signals of Hani peat cellulose δ 18O. These cooling events show that the repeatedly occurring temperature cooling pattern not only appeared in the North Atlantic Region in the high latitudes, but also in the Northwest Pacific Region in the middle latitudes. The climate change events marking the start of the Holocene Epoch, the Holocene Megathermal, the “8.2 kyr” event, the “4.2 kyr” event, the Medieval Warm Period, and the Little Ice Age are further discussed. The sensitivity response of Hani peat cellulose δ 18O to the land surface temperature and the reason for the age accuracy of peat cellulose 14C are also discussed based on the characteristics of the peat bog environment.  相似文献   

10.
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (δ18Oivc-sw) using Mg / Ca and δ18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and δ18Oivc-sw, a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.  相似文献   

11.
The relationships between total mercury (Hg) concentration and stable nitrogen isotope ratio (δ15N) were evaluated in Mullus barbatus barbatus and M. surmuletus from the Mediterranean Sea and M. barbatus ponticus from the Black Sea. Mercury concentration in fish muscle was six times higher in the two Mediterranean species than in the Black Sea one for similar sized animals. A positive correlation between Hg concentration and δ15N occurred in all species. Increase in Hg concentration with δ15N was high and similar in the two Mediterranean fishes and much lower in the Black Sea species. Since this was neither related to trophic level difference between species nor to methylmercury (MeHg) concentration differences between the north-western Mediterranean and the Black Sea waters, we suggested that the higher primary production of the Black Sea induced a dilution of MeHg concentration at the base of the food webs.  相似文献   

12.
Controversy has surrounded the interpretation of the water isotopic composition (δD or δ18O) in tropical and subtropical ice cores in South America. Although recent modeling studies using AGCM have provided useful constraints at interannual time scales, no direct calibration based on modern observations has been achieved. In the context of the recent ice core drilling at Nevado Illimani (16°39′S-67°47′W) in Bolivia, we examine the climatic controls on the modern isotopic composition of precipitation in the Zongo Valley, located on the northeast side of the Cordillera Real, at about 55 km from Nevado Illimani. Monthly precipitation samples were collected from September 1999 to August 2004 at various altitudes along this valley. First we examine the local and regional controls on the common δD signal measured along this valley. We show that (1) local temperature has definitely no control on δD variations, and (2) local rainout is a poor factor to explain δD variations. We thus seek regional controls upstream the Valley potentially affecting air masses distillation. Based on backtrajectory calculations and using satellite data (TRMM precipitation, NOAA OLR) and direct observations of precipitation (IAEA/GNIP), we show that moisture transport history and the degree of rainout upstream are more important factors explaining seasonal δD variations. Analysis of a 92-yr simulation from the ECHAM-4 model (T30 version) implemented with water stable isotopes confirms our observations at seasonal time scale and emphasize the role of air masses distillation upstream as a prominent factor controlling interannual δD variations. Lastly, we focus on the isotopic depletion along the valley when air masses are lifted up. Our results suggest that, if the temperature gradient between the base and the top of the Andes was higher by a few degrees during the Last Glacial Maximum (LGM), less than 10% of the glacial to interglacial isotopic variation recorded in the Illimani ice core could be accounted for by this temperature change. It implies that the rest of the variation would originate from wetter conditions along air masses trajectory during LGM.  相似文献   

13.
The solution of energy-balance model of the Earth global climate and the EPICA Dome C and Vostok experimental data of the Earth surface palaeotemperature evolution over past 420 and 740 kyr are compared.In the framework of proposed bifurcation model (i) the possible sharp warmings of the Dansgaard-Oeschger type during the last glacial period due to stochastic resonance is theoretically argued; (ii) the concept of climatic sensitivity of water in the atmosphere, whose temperature instability has the form of so-called hysteresis loop, is proposed, and based on this concept the time series of global ice volume over the past 1000 kyr, which is in good agreement with the time series of δ18O concentration in the sea sediments, is obtained; (iii) the so-called “CO2 doubling” problem is discussed.  相似文献   

14.
We present data on the average sedimentation rates (ranging from 1.6 cm/kyr to 3 cm/kyr) for the last 300.000 years based on δ18O analyses of foraminifera in a core from the Norwegian Sea and 230Thex measurements in cores from the Norwegian Sea and the Fram Strait (Arctic Ocean). Furthermore, we relate 230Thex variations downcore to the various oxygen isotope stages. This correlation is tentatively interpreted as being a result of the paleoceanographic and paleoclimatic control of bioproductivity. It is shown that based on the average sedimentation rates and characteristic 230Thex variations carbonate-poor sediment cores from northern latitudes can be correlated.  相似文献   

15.
During some, but not all winters, waters on the Mackenzie shelf of the Beaufort Sea become sufficiently saline to ventilate the halocline of the adjacent Canada Basin. This occurred in March 1988, at which time a survey of the temperature, salinity, dissolved nutrient and 18O properties of the ventilating waters was completed. The regional hydrography of 1988 was very similar to that of 1981, when ventilation also occurred in this area. The δ18O-salinity properties of the cold, saline shelf waters revealed that in the winter of 1987–1988, ice was grown from water initially more saline by about 1.5 [psu] than is typical for the area. The higher initial salinity appears to have been a consequence of a two-stage conditioning of shelf waters by storms in the autumn of 1987. Since the amount of ice growth, and consequent salt rejection, over the winter of 1987–1988 was abnormally low, this conditioning played a crucial role in the formation of the ventilating water mass. Nutrient concentrations in ventilating waters were the same as those of waters unaffected by freezing. Thus significant regeneration of nutrients within the cold saline shelf waters did not occur during their 6-month period of formation. In consequence, the nutrient signatures carried into the arctic halocline by winter shelf waters from this area tended to erode, rather than to reinforce the nutrient maxima. For this reason they are not the dominant source of supply to the arctic halocline. Waters in the Chukchi and northern Bering Seas during the same period had δ18O values intermediate between those on the Mackenzie shelf and those in the arctic halocline. Thus winter shelf waters are supplied to the arctic halocline with a range of nutrient, temperature, salinity and δ18O properties. On average, the southern Canada Basin is an impressive net producer of sea ice. The net rate of production from waters in the upper 350 m in this area is about 2 m y−1, approximately twice the net rate of production in the central Arctic Ocean.  相似文献   

16.
Despite the great potential of peat bogs as climatic archives, to date only few studies have focused on the climatic controls on cellulose isotopic composition in modern bog plants. This study attempts to calibrate plant-climate relationships by sampling a set of modern plant species (both vascular plants and mosses) and bog surface waters along an altitude transect in Switzerland. Isotopic analyses of water samples show that the δ18O-values of surface bog waters follow the trend of precipitation despite significant scatter in the data set. Detailed sampling of surface waters within one bog shows that δ18O-values vary widely and are closely related to the micro-topography of the bog surface. More enriched 18O/16O ratios in water samples collected from small raised hummocks than the ones collected from hollows are documented in both horizontal and vertical profiles. A δ18O-δD plot indicates that the process leading to the isotopic enrichment of the uppermost surface waters is evaporation, greater above Sphagnum covered hummocks than above open pools. To investigate the implications of such high variability of source water for plant α-cellulose δ18O-values, a detailed study of both surface water and α-cellulose δ18O-values within one site is conducted. The large δ18O variability observed in surface waters is found to be considerably smoothed in α-cellulose (by a factor of 5-10 depending on the plant species). This indicates that the water used by plant photosynthetic processes reflects the isotopic composition of the average annual precipitation. This points to a source water level for plants of a few decimeters where the variations are smaller than at the air-water interface. The response of the α-cellulose δ18O to the environmental gradient along the altitude transect varies considerably from species to species. For most of the species studied, the δ18O-values decrease with altitude, following the trends of δ18O-values in precipitation and in surface water samples. Some species, the cotton sedge Eriophorum vaginatum and the moss Sphagnum capillifolium, show statistically significant δ18O relationships to an altitude of −1.8‰/km and −2.9‰/km respectively. However, some other plant species, Calluna vulgaris, Vaccinium uliginosum, Andromeda poliflora, Carex pauciflora, Sphagnum cuspidatum and Sphagnum magellanicum, do not, or only partially, reflect changes in climatic parameters associated with an altitude increase. Furthermore, changes in relative humidity, which are not correlated with altitude, are found to explain a large part of the variability in δ18O-values for the sedge Carex pauciflora and the moss Sphagnum cuspidatum. Therefore, this study confirms the importance of species-specific studies when interpreting 18O/16O ratios of macrofossils along a fossil peat sequence as a record of past climate changes. Our study allows to extend the mechanistic model that isotopically links source water and cellulose to the physiological specificities of sedges and mosses. A comparison of the modeled and calculated net biological fractionation factors for Eriophorum vaginatum and Sphagnum capillifolium reveals that these two species appear to have a more homogeneous leaf reservoir than trees.  相似文献   

17.
Water samples were collected from cold and warm karst springs for stable isotopes (δ18O and δD) and 3H from SE of Kashmir valley (western Himalayas) to distinguish the sources of recharge and infer their recharge areas. The spring water samples were most depleted in heavier isotopes in May (average δ18O: ?8.87‰ and δD: ?50.3‰) and enriched in September (average δ18O: ?7.58‰ and δD: ?48.1‰). The depleted 18O and 2H of spring waters bear the signatures of winter precipitation while as the enriched 18O and 2H of spring waters bear the signature of summer rainfall. D‐excess and 3H corroborate with the stable isotope results that the spring flow in spring season (May) and autumn (September) is dominantly controlled by the melting of winter snowmelt and summer rainfall, respectively. The results showed that unlike δD, the δ18O value in the karst spring waters decreases in January suggesting δ18O shift. The spring water samples also fall above the Local Meteoric Water Line and Global Meteoric Water Line indicating the δ18O shift due to interaction of groundwater with the host carbonate rocks during its traverse. The mean elevation of the recharge areas of the springs using δ18O and δD tracers was also estimated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Stable isotope data on humid tropical hydrology are scarce and, at present, no such data exist for Borneo. Delta18O, δ2H and δ13C were analysed on 22 water samples from different parts of the Sungai (river) Niah basin (rain, cave drip, rainforest pool, tributary stream, river, estuary, sea) in north‐central Sarawak, Malaysian Borneo. This was done to improve understanding of the modern stable isotope systematics of the Sungai Niah basin, essential for the palaeoenvironmental interpretation of the Late Quaternary stable isotope proxies preserved in the Great Cave of Niah. The Niah hydrology data are put into a regional context using the meteoric water line for Southeast Asia, as derived from International Atomic Energy Agency/World Meteorological Organization isotopes in precipitation network data. Although the Niah hydrological data‐set is relatively small, spatial isotopic variability was found for the different subenvironments of the Sungai Niah basin. A progressive enrichment occurs towards the South China Sea (δ18O ?4·6‰; δ2H ?29·3‰; δ13C ?4·8‰) from the tributary stream (δ18O ?8·4‰; δ2H ?54·7‰; δ13C ?14·5‰) to up‐river (δ18O c. ?8‰; δ2H c. ?51‰; δ13C c. ?12‰) and down‐river values (δ18O c. ?7·5‰; δ2H c. ?45‰; δ13C c. ?11‰). This is thought to reflect differential evaporation and mixing of different components of the water cycle and a combination of depleted biogenic δ13C (plant respiration and decay) with enriched δ13C values (due to photosynthesis, atmospheric exchange, mixing with limestone and marine waters) downstream. Cave drip waters are relatively enriched in δ13C as compared to the surface waters. This may indicate rapid degassing of the cave drips as they enter the cave atmosphere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The Milankovi theory stresses that the summer insolation in the high northern latitudes that is dominated by the precession cycle controls the glacial/interglacial cycles in global climate change.If the climate system responds linearly to the external insolation forcing,the precession cycle of 23 or 19 ka should dominate the variations in the climatic proxy records.I performed spectral and evolutive cross spectral analyses on the high resolution benthic 18O and 13C records from the South China Sea and the North Atlantic,the proxies of global ice volume and ocean carbon reservoir respectively.I found that the obliquity instead of the eccentricity or the precession is the most marked cycle in the global ice volume and ocean carbon reservoir variations over the past 5 Ma.The analysis further reveals that only at the obliquity band instead of the eccentricity or the precession band does the global ice volume and ocean carbon reservoir display consistently high coherency and stable phase relationship over the past 5 Ma.The consistently positive or near-zero phases of the benthic 18O relative to the benthic13C at the obliquity band suggest that the global carbon cycle is involved in the polar ice sheet growth as an important internal feedback,not a determinative driving factor.The obliquity instead of the precession or the eccentricity takes the dominant role of driving the global climate change during the Pliocene and Pleistocene.  相似文献   

20.
《Marine pollution bulletin》2014,87(1-2):238-243
We analyzed δ13C, δ15N and δ18O in the muscle and liver from killer whales stranded on the coast of Japan. The δ15N values in the muscle samples from calves were apparently higher than those in their lactating mothers, suggesting that nursing may result in the higher δ15N values in the muscle samples of calves. The δ15N value in the muscle samples of male and female whales, except for the calves, were positively correlated with the δ13C values and body length, suggesting that the increases in δ15N were due to the growth of the whales and increase in their trophic level. In contrast, the δ18O values in the muscle samples of female whales except for the calves were negatively correlated with the δ13C and δ15N values. The δ18O may be lower in whales occupying higher trophic positions (δ15N), although it might also be affected by geographic and climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号