共查询到20条相似文献,搜索用时 15 毫秒
1.
In many anoxic sedimentary environments, the onset of sulfate reduction, and pyritization of detrital iron-bearing minerals, leads to a precipitous decline in magnetic mineral concentration during early diagenesis. The usefulness of the surviving paleomagnetic record in such environments is usually argued to depend on how much of the primary detrital magnetic assemblage survives diagenetic dissolution. Detailed rock magnetic and electron microscope analyses of rapidly deposited (~ 7 cm/kyr) latest Pleistocene–Holocene sediments from the continental margins of Oman (22°22.4′N, 60°08.0′E) and northern California (38°24.8′N, 123°58.2′W) demonstrate that pyritization during early diagenesis also leads to the progressive down-core growth of the ferrimagnetic iron sulfide greigite. Greigite growth begins with nucleation of large concentrations of superparamagnetic (SP) nanoparticles at the inferred position of the sulfate–methane transition, which can explain the apparently paradoxical suggestion that diagenetically reduced sediments contain enhanced concentrations of SP particles. Looping of hysteresis parameters on a “Day” plot records the dissolution of single domain (SD) (titano-)magnetite and the formation of SP greigite, which then slowly and progressively grows through its SD blocking volume and acquires a stable paleomagnetic signal. This looping trend is also evident in data from several published records (Oregon margin, Korea Strait, Japan Sea, Niger Fan, Argentine margin, and the Ontong–Java Plateau), indicating that these processes may be widespread in reducing environments. Our observations have profound implications for paleomagnetic records from sulfate-reducing environments. The paleomagnetic signal recorded by greigite is offset from the age of the surrounding sediments by 10's of kyr, and ongoing growth of greigite at depth results in smoothing of the recorded signal over intervals of 10's to 100's of kyr. We therefore expect the presence of greigite to compromise paleomagnetic records in a wide range of settings that have undergone reductive diagenesis. 相似文献
2.
A series of alternating phreatomagmatic ("wet") and magmatic ("dry") basaltic pyroclastic deposits forming the Crater Hill
tuff ring in New Zealand contains one unit (M1) which can only be interpreted as the products of mixing of ejecta from simultaneous
wet and dry explosions at different portions of a multiple vent system. The principal characteristics of M1 are (a) rapid
lateral changes in the thicknesses of, and proportions in juvenile components in individual beds, and (b) wide ranges of juvenile
clast densities in every sample. M1 appears to have been associated with an elongate source of highly variable and fluctuating
magma : water ratios and magma discharge rates. This contrasts with the only other documented mixed (wet and dry) basaltic
pyroclastic deposits where mixing from two point sources of quite different but stable character has been inferred.
Received: July 11, 1995 / Accepted: February 13, 1996 相似文献
3.
Paleomagnetic directions for the Upper Silurian and Lower Devonian carbonates of the Helderberg escarpment (New York State) differ from expected Late Silurian and Early Devonian directions for cratonic North America. The mean direction ( D = 165°, I = −10°; paleopole at 50°N 129°E) is similar to Late Carboniferous and Early Permian results. Negative fold tests, and a lack of reversals, suggest that the magnetization is secondary. However, low coercivities, low blocking temperatures, the thermomagnetic curves ( TC near 570°C) and the acquisition of isothermal remanent magnetizations all suggest that the remanence is carried by magnetite. If a detrital origin of these magnetites is assumed, the secondary nature of the remanence would argue for thermal resetting as a result of deep burial of the rocks. However, no evidence for such thermal resetting is seen in the alteration of conodonts. More likely perhaps is a chemical or thermochemical origin of the remanence; this would require the magnetites to be authigenic. 相似文献
5.
Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (delta15N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (delta13C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species.After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months. 相似文献
6.
Between January 1978 and September 1979 samples of subsurface (1 m) water and surface sediment were collected from sites in the North Sea, English Channel, Irish Sea and a number of estuarine areas. These have been analysed by fluorescence spectroscopy (UVF) in order to provide information on the levels of hydrocarbons generally present in UK marine waters.Total hydrocarbon concentrations (THCs) of water samples ranged from 1.1–74 μg l. ?1 Ekofisk crude oil equivalents, all values greater than 3.5 μg l. ?1 occurring inshore. In offshore areas the mean THCs were: 1.3 μg l. ?1 in the northern North Sea, 1.5 μg l. ?1 in the western Channel, 2.5 μg l. ?1 in the eastern Channel and southern North Sea, and 2.6 μg l. ?1 in the Irish Sea.THCs of sediment samples ranged from 0.27–340 μ g ?1 dry weight Ekofisk crude oil equivalents, the highest concentration being in the Queen's Channel, the main entrance to the River Mersey. 相似文献
7.
Clast shape measurements have developed into a standard method for reconstructing the transport histories of sediments in glacial environments. The majority of studies use the ‘RA‐C 40’ covariance approach, with some researchers routinely including clasts of varying lithologies within their samples. The corollary is that variable lithological properties may control clast form and roundness, rather than debris‐transport mechanisms. Despite this, the role of lithology on clast shape in glacial environments has rarely been analysed. Furthermore, some studies have reported difficulties in using the RA‐C 40 co‐variance plot in discriminating clasts that have undergone subglacial transport, and clasts that have been modified by fluvial activity. Results from a glacierized valley in a temperate alpine setting indicate that detailed analysis of clast shape where samples are of uniform lithology, although time consuming, is a useful tool in the investigation of deposits in glaciated environments. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction‐related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite‐pumpellyite and pumpellyite‐actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite‐actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K–Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180–130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150–130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach–Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes). 相似文献
9.
A qualitative and semi-quantitative study of recent dinoflagellate cysts has been undertaken in the NW part of Aegean Sea, Thermaikos Gulf (Eastern Mediteranean), before (September 2001), during (October 2001) and after 120 days (February 2002) of intensive trawling activities. This is the first survey of recent dinoflagellate cysts from Greek marine coastal environments. Sediment samples were collected with a corer and the vertical distribution of the cysts was studied at five different layers, from 0 to 10 cm. Dinoflagellate cysts were both abundant and diverse. Cysts were found over the whole sampling area and periods, with concentrations ranging between 247–3202 cysts cm −3. Thirty-six cyst types were encountered, of which 32 were identified to species level, representing 12 genera. It seems that significant local resuspension, related to the onset of the trawling period and stirring up of the sediment, contributed to mixing of the upper layers, resulting to more homogenous cyst profiles in the sediment. Viable cysts constituted 16–60% of the total cyst abundance. The abundance peaks of viable cysts within the subsurface sediment layers, observed during the undisturbed period, disappeared during October. In February, the reduction of cyst concentration was associated to a loss of viable cysts, whilst the ratio of viable/empty cysts ranged between 0.30 and 0.67. The abundance of the different dinoflagellate species, in their active form, was monitored in order to detect any relationship between the concentration of cysts in the top 10 cm of sediment and blooms of algae in the water column. Cysts of potentially toxic species, causing Paralitic Shellfish Poisoning (PSP), such as Alexandrium cf. tamarense, A. cf. affine, A. cf. minutum, as well as Gymnodinium catenatum, were detected in the cyst survey. 相似文献
10.
The Ohakune Craters form one of several parasitic centres surrounding Ruapehu volcano, at the southern end of the Taupo Volcanic Zone. An inner scoria cone and an outer, probably older, tuff ring are the principal structures in a nested cluster of four vents.The scoria cone consists of alternating lava flows and coarse, welded and unwelded, strombolian block and bomb beds. The strombolian beds consist of principally two discrete types of essential clast, vesicular bombs and dense angular blocks. Rare finer-grained beds are unusually block-rich. The tuff ring consists of alternating strombolian and phreatomagmatic units. Strombolian beds have similar grain size characteristics to scoria cone units, but contain more highly vesicular unoxidised bombs and few blocks. Phreatomagmatic deposits, which contain clasts with variable degrees of palagonitisation, consist of less well-sorted airfall deposits and very poorly sorted, crystal-rich pyroclastic surge deposits.Disruption by expanding magmatic gas bubbles was a major but relatively constant influence on both strombolian and phreatomagmatic eruptions at Ohakune. Instead, the nature of deposits was principally controlled by two other variables, vent geometry and the relative influence of external water during volcanism. During tuff-ring construction, magma is considered to have risen rapidly to the surface, and to have been ejected without sufficient residence time in the vent for non-explosive degassing. Availability of external water principally governed the eruption mechanism and hence the nature of the deposits. Essentials clasts of the scoria cone are, by comparison, dense, degassed and oxidised. It is suggested that a change in vent geometry, possibly the construction of the tuff ring itself, permitted lava ponding and degassing during scoria cone growth. During strombolian eruptions, magma remaining in the vent probably became depleted in gas, leading to the formation of an inert zone, or crust, above actively degassing magma. Subsequent explosions had therefore to disrupt both this passive crust and underlying, vesiculating magma “driving” the eruption. Cycles of strombolian eruption are thought to have stopped when the thickness of the inert crust precluded explosive eruption and only recommenced when some of this material was removed, either as a lava flow or during phreatomagmatic explosions when external water entered the vent. Such explosions probably formed the unusually fine-grained and block-rich beds in the strombolian sequence.The Ohakune deposits are an excellent example of the products of explosive eruption of fluid, gas-rich basic magma vesiculating under very near-surface conditions. A complex interplay of rate of magma rise, rate and depth of formation of gas bubbles, vent geometry, abundance of shallow external water, wind velocity and accumulation rate of ejecta determines the nature of deposits of such eruptions. 相似文献
11.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m 3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF 6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF 2, AlF 3 and Ca 5(PO 4) 3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis. 相似文献
12.
Glass-bearing plutonic fragments occur as rare accessory lithics within the ca. 64 ka Rotoiti and Earthquake Flat ignimbrites that were erupted from Okataina caldera complex, Taupo Volcanic Zone, New Zealand. Granitoid lithic fragments are only found in the Rotoiti ignimbrite and fall into two groups. Group 1 granitoids have textures consistent with a period of slow cooling followed by rapid quenching, and were excavated by the Rotoiti eruption from a single incompletely solidified magma body. Although isotopic ratios for the Group 1 granitoids are similar to the host ignimbrite, they are not cognate, having different chemistry, mineralogy, mineral chemistry and crystallisation history. It is more likely that they represent fragments of a separate incompletely solidified magma chamber that was intercepted by the erupting Rotoiti ignimbrite magma. Low LILE and high HFSE abundances favour a comagmatic link with the ca. 0.28 Ma Matahina ignimbrite and it is suggested they are derived from an isolated cupola of the Matahina magma chamber that remained at depth (between 3.5 and 5 kbar pressure) after eruption of the Matahina ignimbrite. Migration toward the surface probably accompanied development of the Rotoiti magma system in the upper crust. Most geochemical variation in Group 1 granitoids is related to the abundance of biotite, the concentration of which is controlled by differential shear. REE abundance is controlled by light REE-enriched accessory minerals preferentially included within biotite. Although Eu n remains constant in the Group 1 granitoids, Eu/Eu * varies systematically with (La/Yb) n and is controlled by variations in Sm and Gd rather than in Eu. Group 2 granitoid fragments have a wide range of composition, comparable to many Okataina rhyolites, including those found as lithic fragments in the Rotoiti ignimbrite. Rare microdiorite fragments occur in both Rotoiti and Earthquake Flat ignimbrites and typically contain vesicular interstitial glass indicating that they were incompletely solidified prior to eruption. Those from the Rotoiti ignimbrite are comparable to the (>64 ka) Matahi basaltic tephra and probably represent part of the same magmatic event which generated the Matahi tephra. 相似文献
13.
A geographically extensive investigation was carried out to analyze the concentrations of heavy metals, PCBs and OCPs in the sediments and marine organisms collected from the Liaohe Estuary. In order to determine the spatial distribution and potential ecological risk of heavy metals, the surface sediments were collected from 44 sites in the Liaohe Estuary. The results showed that the heavy metal contents in the sediments were observed in the following order: Cr (11.2–84.8 mg/kg) > Cu (1.7–47.9 mg/kg) > Pb (4.3–28.3 mg/kg) > As (1.61–12.77 mg/kg) > Cd (0.06–0.47 mg/kg) > Hg (0.005–0.113 mg/kg). In comparison with the concentrations of heavy metals and POPs in other regions, the concentrations of As, Pb and DDTs in the Liaohe Estuary were generally low, and other pollutant concentrations were inconsistent with those reported in other regions. The contamination factor (CF), the pollution load index (PLI), the geoaccumulation index and the potential ecological risk index were used to analyze the pollution situation, which showed that the heavy metal pollution in Liaohe Estuary is mainly dominated by Cd and Hg. The concentrations of the four heavy metals varied significantly in the three kinds of tested organisms (fish, mollusk and crustacean), indicating the different accumulative abilities of the species. The results obtained in this study provide useful information background information for further ecology investigation and management in this region. 相似文献
14.
The thermal evolution of continental crust during active collision is modeled through numerical solutions of the two-dimensional heat conduction equation for a rapidly moving medium. The boundary conditions used in the modeling are derived from geological and geophysical observations from the active collision zone in the South Island of New Zealand. The problem domain over which the solutions are obtained consists of a 40 km horizontal by 25 km vertical spatial plane with a vertical discontinuity at 10 km from the western boundary. To the east of this discontinuity, vertical uplift rates of up to 10 mm/a occur over a timespan of up to 4 Ma. Temperature distributions are calculated at 10 ka intervals over the 4 Ma duration. A two-dimensional high-temperature region is established upon initiation of uplift of the eastern block due to the advective component carrying heat upwards more rapidly than it can be dissipated laterally from the problem domain. Temperatures within the upper 5 km are greater than 400°C after 2.25 Ma with geothermal gradients of up to 200°C/km attained within the upper 3 km. At times greater than 2.5 Ma, the vertical temperature distribution changes little while the anomalously high temperatures spread laterally into the stationary crust.Using rheological equations to describe the brittle behaviour of a water-saturated upper crust and the ductile behaviour of a quartz-dominated lower crust, together with the thermal distribution of the conduction models, the mechanical evolution of a collision zone is investigated. In addition to high crustal temperatures and associated high heat flow, rapid uplift produces a weakening of the crust by raising of the depth of transition from brittle to ductile behaviour. Within the zone of most rapid uplift, the brittle-ductile transition rises from 13 km to less than 5 km after 1.5 Ma of uplift. Further uplift reduces the brittle layer to 3 km thickness and causes lateral spreading of the low-strength zone. The reductions in crustal strength caused by the thermal weakening produce a high-strain zone within the region of maximum uplift which is incapable of sustaining large differential stresses. This causes horizontal and vertical stress transfer and results in shallow seismicity increases in the adjacent crust as well as in intermediate depth seismicity within the high-strength upper mantle.Because the thermal and mechanical anomalies discussed are a function of rapid uplift, all regions of active continental collision may be expected to exhibit similar behaviour. Some mechanical and thermal characteristics of the Himalayan collision zone are briefly examined in light of the numerical modeling. 相似文献
15.
Surface sediments and porewater from 12 sites within Xiamen offshore areas and organisms from a heavily contaminated site Yuandang Lagoon were sampled and analyzed for eight polybrominated diphenyl ethers (PBDEs) congeners (-28, -47, -99, -100, -153, -154, -183 and -209). The total concentrations of eight PBDEs (∑ 8PBDEs) and BDE-209 in sediments ranged from 0.27 to 76.54 ng/g with an average of 16.31 ng/g and from 0.10 to 70.11 ng/g with an average of 14.94 ng/g, respectively. Concentrations of ∑ 8PBDEs in porewater ranged from 2.5 to 34.1 ng/L, with a mean value of 15.3 ng/L. In this study, the partition coefficients (log ) of PBDE congeners (without -209) were significantly correlated with their octanol-water partition coefficients (log KOW) ( r2 = 0.74, P < 0.01). ∑ 8PBDE concentrations ranged from 0.33 to 1.26 ng/g (lipid weight) in marine organisms, and PBDE congener patterns were significantly different between fish and clam, crab. 相似文献
16.
Eruption episodes, where a series of eruption events are generically related, can include the eruption of a wide spectrum of volcanic activity over decadal periods. This paper concentrates on the opening phases of an eruption episode which occurred approximately 1800 yrs BP from Mt Taranaki, New Zealand. These events spanned the eruption of differing bulk compositions and styles from two distinct vent locations; an andesitic sub-plinian eruption from the summit vent and a scoria cone-building eruption of basaltic magma from a satellite vent. Compositional profiles and zoning textures of plagioclase, amphibole and clinopyroxene phenocrysts from the opening andesitic event show evidence of magma mixing and subsequent crystallisation just prior to the initiation of the eruption episode. Titanomagnetite grain morphology and Ti variation suggest that the magma mixing event occurred within a few days to weeks before the eruption acting as a trigger for it. We present a magmatic model which is constrained by the petrological observations and eruptions of the episode. In this model magma differentiation at depth causes its rise and recharging of a mid-crustal magma storage area at 5–7 km. Although the recharging magma differed slightly in oxygen fugacity and temperature, it was compositionally and physically similar enough to the residing andesitic magma to allow efficient mixing. The petrological characteristics described here can be readily observed and enable identification of mixing events in other recent eruption episodes. 相似文献
17.
On six occasions, Irom July 1971 to June 1973, discharge samples from twelve selected fumaroles on White Island in the Bay of Plenty, New Zealand, were collected and analysed. The large variations in the absolute and relative proportions of carbon, sulfur, and chlorine containing species, occurring simultaneously over the entire active area of the volcano, suggest that all fumaroles are essentially supplied with one common type of gas made up of at least three components. During quiet periods, with low fumarolic outlet temperatures (≤300), the component with ratios C:S:Cl of 92:3:5 predominates; during heating up periods the relative carbon contents decrease, considered to be due to admixture of a component with C:S:Cl ratios of 44:26:30. Coinciding with maximum outlet temperatures (≈ 800°), however, the component with C:S:Cl ratios of 70:29:1 predominates, causing a rapid and marked rise in the ratio S:Cl from unity to above ten. The latter component with low ratios of C:S of around 2.5 and ratios of S:Cl of above ten is considered to be most closely related to the primary magmatic gas phase. 相似文献
18.
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition. 相似文献
19.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/ 238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and 29–26 Ma 40Ar/ 39Ar ages ( n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/ 238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation. We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction. 相似文献
20.
Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic
scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions.
The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger
events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of
magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic
magma by mixing between relatively high (1000–1200 °C)- and low (∼1000 °C)- temperature (T) end members. Oscillatory zoning
in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although
the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst
clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the
four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature
(high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived
from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation
from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system
comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in
the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected
into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions
sequentially tapped these magma pockets.
Received: 1 April 1998 / Accepted: 22 December 1998 相似文献
|