首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glaciomarine surficial sediments in cores taken from Bransfield Strait, adjacent to the Antarctic Peninsula, have yielded abundant recycled and contemporaneous (Pleistocene–Holocene) palynomorphs. The former are derived principally from Late Cretaceous–Palaeogene sediments and provide information on glaciomarine depositional conditions and sediment source areas. The composition of the assemblages suggests that they reflect vegetation that was endemic to the Weddellian Biogeographic Province, which includes what is now Seymour Island, James Ross Island and other parts of the Antarctic Peninsula region. The sediments concerned are considered to have accumulated as a result of ice-rafting and discharge of subglacial meltwater.  相似文献   

2.
Eruptions beneath ice sheets and glaciers can generate hazardous ash plumes and powerful meltwater floods, as demonstrated by the recent Icelandic eruptions at Eyjafjallajökull in 2010 and at Grímsvötn in 2011. A key scientific objective for volcanologists is to better understand the factors controlling subglacial eruptions, but the eruptions are mostly hidden beneath ice that is often hundreds of metres thick, thereby preventing direct observation. New approaches are therefore needed to reconstruct the factors driving explosive activity and the response of the overlying ice. The dissolved volatile content, preserved in glassy volcanic rock, offers a useful means of reconstructing palaeo‐ice thicknesses. However, for subglacial rhyolite at least, there seems to be little or no correlation between loading pressure and eruptive style. Instead, there is a strong correlation between the pre‐eruptive volatile content, degassing path and eruptive behaviour. It seems that the style of many subglacial eruptions is controlled by the same mechanisms as subaerial eruptions, with explosivity strongly influenced by degassing and magmatic fragmentation.  相似文献   

3.
《Quaternary Science Reviews》2007,26(9-10):1384-1397
To investigate the drainage conditions that might be expected to develop beneath soft-bedded ice sheets, we modeled the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet from Hudson Bay to the Missouri River. Simulations suggest the James Lobe had little effect on regional groundwater flow because the poorly conductive Upper-Cretaceous shale that occupies the upper layer of the bedrock would have functioned as a regional aquitard. This implies that general northward groundwater flow out of the Williston Basin has likely persisted throughout the Quaternary. Moreover, the simulations indicate that the regional aquifer system could not have drained even the minimum amount of basal meltwater that might have been produced from at the glacier bed. Therefore, excess drainage must have occurred by some sort of channelized drainage network at the ice–till interface. Using a regional groundwater model to determine the hydraulic conductivity for an equivalent porous medium in a 1-m thick zone between the ice and underlying sediment, and assuming conduit dimensions from previous theoretical work, we use a theoretical karst aquifer analog as a heuristic approach to estimate the spacing of subglacial conduits that would have been required at the ice–till interface to evacuate the minimum water flux. Results suggest that for conduits assumed to be on the order of a tenth of a meter deep and up to a meter wide, inter-conduit spacing must be on the order of tens–hundreds of meters apart to maintain basal water pressures below the ice overburden pressure while evacuating the hypothesized minimum meltwater flux.  相似文献   

4.
《Sedimentary Geology》2007,193(1-4):33-46
The results of a sedimentological study of a branching esker system near Uniszki, north-central Poland, provide a deeper insight into the depositional processes that took place within a subglacial tunnel formed during the Wartanian (= Late Saalian) glaciation. The internal structure of the esker deposits is complex, and coarse-grained debris intercalates with silt and clay layers. Ten main lithofacies types are recognized, including one formed in a tunnel-mouth environment; and three other lithofacies, which must have been deposited in a truly subglacial environment. A “subglacial-tunnel association” is defined. Fluctuations in meltwater discharge through the tunnels resulted in cyclicity in the sedimentary succession. Deposition of fine-grained facies took place during low discharge, whereas boulder and gravel lithofacies formed in the tunnel-mouth during high discharge. Changes in the hydrostatic conditions finally resulted in the collapse of the tunnel roof, so that the succession became covered with supraglacial deposits. The Uniszki deposits record deposition under highly variable sedimentary hydrostatic conditions, which is typical of environments in the Polish Lowlands. The results of the present study provide some criteria for the interpretation of subglacial meltwater debris and thus may contribute to the current discussion on subglacial-tunnel sedimentation.  相似文献   

5.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

6.
7.
格陵兰冰盖表面消融研究进展   总被引:3,自引:1,他引:2  
杨康 《冰川冻土》2013,35(1):101-109
冰盖表面消融是格陵兰冰盖物质平衡的重要组成部分, 已成为近年来格陵兰冰盖研究的热点. 格陵兰冰盖表面消融研究的关键在于理解冰盖融水的产生、 运移和释放等水文过程, 需要解决如下关键科学问题: 1) 冰盖表面产生了多少融水;2)冰盖表面水文系统具有什么特征; 3)冰盖表面融水如何影响冰盖运动; 围绕这些科学问题, 总结了格陵兰冰盖表面消融的研究进展. 冰盖表面消融建模、 冰盖表面湖的信息提取与面积特征变化、 深度反演与体积量算等是目前研究冰盖表面融水量的主要途径, 冰盖表面湖、 冰盖表面径流、 锅穴与冰裂隙等表面水文要素的空间分布规律研究则可用于揭示冰盖表面水文系统特征, 冰盖表面融水与冰盖运动速率的关系、 表面融水进入冰盖内部与底部的水文过程是目前揭示表面融水如何影响冰盖运动的主要手段.  相似文献   

8.
An excellent section in the Welzow-Süd open-cast lignite mine in Lower Lusatia, eastern Germany, provided a rare opportunity to study a small (5 m deep), buried subglacial meltwater channel of Saalian age. The channel is steep-sided and distinctly U-shaped. It is separated from undeformed outwash deposits in which it is incised by a sharp erosional contact and it is filled with meltwater sand and till. The till was possibly squeezed into the channel from the adjacent ice/bed interface. Directly beneath the channel, there is a partly truncated diapir of clayey silt, evidencing sediment intrusion into the channel from below. During channel formation, the pressure gradient was oriented from the surrounding sediments into the channel, so that the channel served as a drainage conduit for groundwater from the adjacent subglacial aquifer. The substratum consists largely of sandy aquifers with a total thickness of about 100 m, separated by two aquitards. Channel formation was initiated when hydraulic transmissivity of the bed did not suffice to evacuate all the subglacial meltwater as groundwater flow. As the Welzow-Süd channel belongs to a dense network of subglacial channels in eastern Germany, temporary ice-sheet instability in this region prior to channel formation seems possible.  相似文献   

9.
Jasper Knight   《Sedimentary Geology》2003,160(4):291-307
Temporal changes in meltwater abundance, distribution and characteristics (controlling subglacial processes and ice sheet dynamics) can be inferred from subglacial sediment successions. Field evidence for changes in subglacial meltwater characteristics over time is presented from two sites (Doonan, Drummee) near a former late Weichselian (Devensian) ice centre in the north of Ireland. On a macroscale, both sites investigated show subglacial diamicton overlying glacially planated bedrock platforms. In more detail, primary sedimentary structures and facies variability show a complex relationship between depositional processes and meltwater characteristics at the ice/bed interface (IBI). Sedimentary evidence suggests sediment transport and deposition took place by low-viscosity subglacial slurries (mobile sediment–meltwater admixtures), which are part of a continuum between the processes of subglacial sediment deformation and subglacial meltwater flooding. Subtle changes in meltwater abundance and distribution at the IBI controlled slurry rheology, mechanisms of particle support and detailed sediment depositional processes.  相似文献   

10.
This paper presents an historical and in places informal account of the meltwater hypothesis, which invokes enormous outburst floods for the formation of subglacial bedforms. It begins with a brief discussion of the difficulties of determining processes of formation for landforms, which are not seen in formation. Analogy provides a solution to these difficulties. Analogy between erosional marks at the bases of turbidites and drumlins, which were the starting point for this hypothesis, rests on the idea that inverted erosional marks at the ice bed are subsequently infilled to form drumlins. Field tests on the sedimentology, architecture, and landform associations of drumlins in the Livingstone Lake drumlin field are outlined before more extensive work on bedrock erosional forms and flood routes is introduced. Bedrock erosional forms played a central part in establishing the hypothesis since their form and ornamentation are confidently interpreted as fluvial. Their form and genesis are discussed mainly with reference to sites at French River and Wilton Creek, Ontario, though some remarkable bedrock erosional forms in Antarctica support their regional extent. Initially in the meltwater hypothesis, drumlins were thought to be cavity fills and erosional drumlins were recognized later. This development is shown to be central to the realization that drumlin composition may be inferred from drumlin form. The scale of drumlin fields, measured at about 103 km2, and the magnitude of the inferred floods require that the flood events were regional. Regional-scale flood tracts in Ontario, Quebec, Alberta and the Northwest Territories extending over 1000 km in length and several hundred kilometers in width, support this suggestion. Floods, had they occurred, would have caused rapid rates of sea level rise and may have changed climate through their effects on ocean stratification and sea surface temperatures. The meltwater hypothesis covers a range of bedforms besides drumlins and bedrock erosional marks—fluting, Rogen moraine, hummocky terrain, and transverse ridges. Recent work shows how these forms are best explained by the meltwater hypothesis. The roles of water storage and release, which underpin the theory of the meltwater hypothesis, remain poorly understood.  相似文献   

11.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

12.
Characteristics of large‐scale fluting and hummocky terrain on the Canadian Prairies test glacial and meltwater hypotheses for landform genesis. These tests defend the meltwater model. Neither sedimentary nor glaciotectonic processes can fully explain such erosional landforms. Province‐scale flow paths, which mark palaeo‐ice streams and subglacial flood routes, contain large‐scale fluting with flanking hummock terrain. Antecedent relief causes these paths to differ from other flood landscapes such as the Scablands. Proponents of the glacial hypothesis use an invalid analogy between Icelandic and Prairie landsystems. They suggest that groove‐ploughing formed large‐scale fluting, and that ice pushing created hummocky terrain. However, landform location, form, and extent, surface lags, truncated architecture, and landform associations favour the meltwater hypothesis. A simple thought experiment and clear understanding of the principle of least number of assumptions answer the criticisms that meltwater forms cannot cross‐cut and that the meltwater hypothesis disregards proper hypothesis testing. An example of cross‐cutting erosional marks supports this theory. No narrow tract of smoothed terrain with fluting terminates at the glacially thrust Neutral Hills, negating an important point in the glacial hypothesis. While neither the glacial hypothesis nor postglacial winnowing explain boulder and cobble lags with percussion marks, meltwater processes explain them well. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Subsurface microbial oxidation of overridden soils and vegetation beneath glaciers and ice sheets may affect global carbon budgets on glacial-interglacial timescales. The likelihood and magnitude of this process depends on the chemical nature and reactivity of the subglacial organic carbon stores. We examined the composition of carbon pools associated with different regions of the Greenland ice sheet (subglacial, supraglacial, proglacial) in order to elucidate the type of dissolved organic matter (DOM) present in the subglacial discharge over a melt season. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry coupled to multivariate statistics permitted unprecedented molecular level characterization of this material and revealed that carbon pools associated with discrete glacial regions are comprised of different compound classes. Specifically, a larger proportion of protein-like compounds were observed in the supraglacial samples and in the early melt season (spring) subglacial discharge. In contrast, the late melt season (summer) subglacial discharge contained a greater fraction of lignin-like and other material presumably derived from underlying vegetation and soil. These results suggest (1) that the majority of supraglacial DOM originates from autochthonous microbial processes on the ice sheet surface, (2) that the subglacial DOM contains allochthonous carbon derived from overridden soils and vegetation as well as autochthonous carbon derived from in situ microbial metabolism, and (3) that the relative contribution of allochthonous and autochthonous material in subglacial discharge varies during the melt season. These conclusions are consistent with the hypothesis that, given sufficient time (e.g., overwinter storage), resident subglacial microbial communities may oxidize terrestrial material beneath the Greenland ice sheet.  相似文献   

14.
Detailed sedimentological and microtextural analyses of newly-discovered late Neogene diamictites and other coarse-grained facies, mostly sandwiched between hyaloclastite of the James Ross Island Volcanic Group and Cretaceous sandstone and mudstone, indicate deposition mainly by glacigenic debris flows. The deposits on James Ross Island (northern Antarctic Peninsula) constrain the depositional setting, ice–bed dynamics and regional palaeoclimate. The sequences on James Ross Island vary in age but are mainly late Miocene and Pliocene. Unlike Neogene sedimentary sequences elsewhere in Antarctica, those on James Ross Island are unusually well-dated by a combination of 40Ar/39Ar and 87Sr/86Sr analyses on fresh interbedded lavas and pristine bivalve molluscs, respectively. The Sr isotopic ages of the debris flows cluster around 4.74, 4.89, 5.44, 5.78, and 6.31 Ma and probably date relatively warm periods in the northern Antarctic Peninsula region, when the bivalves lived under ice-poor or seasonally ice-free conditions. The bivalves are often remarkably well-preserved, lack adhering lithified sediment and, in at least two locations, are large, mainly unfragmented and sometimes articulated, suggesting that they were alive immediately prior to their incorporation in subaqueous debris flows at the margins of an advancing glacier. These fossiliferous glacigenic debris flows signify episodes of ice expansion during relatively warm periods, or “interglacials”, of the late Miocene and Pliocene. The James Ross Island glacigenic sedimentary successions attain thicknesses of up to 150 m and extend over 4 km laterally. The high volume of glacigenic sediment delivery implicit in the James Ross Island successions indicates that a series of dynamic ice fronts crossed the region during the late Miocene and Pliocene epochs. Associated evidence, in the form of clast abrasion (including striations and faceting) and bedrock erosion, is indicative of basal sliding and subglacial sediment deformation active at the ice–bed interface and wet-based temperate or polythermal regimes, prior to remobilisation. The evidence further suggests two local ice caps on James Ross Island during the warm periods, as well as ice-overriding by the Antarctic Peninsula Ice Sheet from the west and northwest.  相似文献   

15.
对天山乌源1号冰川表面冰尘(Fz)及底部沉积层(Dz)的理化性质及真菌的多样性、群落结构、OTU的系统发育进行了比较分析。ITS克隆文库分析显示,依据99%相似性共得到26个真菌OTU,表面冰尘和底部沉积层分别为21和22个,其中17个为共有OTU。天山1号冰川中真菌以担子菌门(Basidiomycota)、子囊菌门(Ascomycota)占绝对优势,子囊菌门的真菌在Fz、Dz文库中的比例分别约为27%、57%。系统发育分析显示子囊菌门的真菌有14个OUT,8个属,其中Cladosporium仅分布在冰川表面(6.25%),而Aureobasidium仅出现冰川底部沉积层(8.93%)。另外6个属Tetracladium、Pseudeurotium、Fusarium、Penicillium、Simplicillium、Aspergillus在冰川底部和表面均有分布,但丰度明显不同,尤其是Aspergillus、Simplicillium在冰川底部沉积物中占优势(分别为17.86%、12.50%)。担子菌门的克隆主要来自Rhodotorula、Leucosporidium属,前者主要在分布冰川表面(12%),底部沉积层很少,后者在冰川表面及底部均有分布,分别占文库的比例为8.69%、12.50%。冰川表面和底部沉积层生态条件迥异,对其中的微生物系统发育类群具有明显的选择性。  相似文献   

16.
John L. Smellie   《Earth》2008,88(1-2):60-88
Subglacially-erupted volcanic sequences provide proxies for a unique range of palaeo-ice parameters and they are potentially highly useful archives of palaeoenvironmental information, particularly for pre-Quaternary periods. They can thus be incorporated by climate and ice sheet modellers in the same way as other environmental proxies, yet they remain largely under-utilised. Basaltic volcanic sequences erupted subglacially consist empirically of two major types, corresponding to eruptions under “thick” and “thin” ice, respectively. The latter are called subglacial sheet-like sequences and only one generic type of sequence has been described so far. However, there is now evidence that there are at least two generic types, with significantly different implications for interpretations of associated palaeo-ice sheet thicknesses. One type, which is relatively well described, is believed to be a diagnostic product of eruptions associated with a relatively thin glacial cover (< c. 150–200 m), probably corresponding most commonly to mountain glaciers but also conceivably thin ice caps or sheets, of any thermal regime (temperate, sub-polar, polar). It is here called the Mount Pinafore type. By contrast, a second subglacial sheet-like sequence, described in this paper for the first time and called the Dalsheidi-type, represents products of eruptions under much thicker ice (probably > 1000 m). Eruptions that form the Dalsheidi-type of sequence commence with the injection and inflation of a sill along the ice:bedrock interface. Such “interface sills” were predicted theoretically but had no known geological example, until now. Subsequent evolution commonly involves floating of the ice cover, catastrophic meltwater drainage and emplacement of widespread sheets of hyaloclastite, as cohesionless mass flows and hyperconcentrated flows. The water-saturated hyaloclastite is characteristically intruded by apophyses sourced in the underlying “interface sill”. Eruptions are commonly not explosive until their later stages. Dalsheidi-type deposits are outflow sequences probably linked to subglacial pillow volcanoes, which in Iceland were erupted along fissures. They only provide an indication of minimum thicknesses of the associated overlying ice, although theoretical considerations suggest substantial ice thicknesses in excess of 1000 m. However, they are likely to be characteristic products of eruptions under the thick West Antarctic Ice Sheet, but are currently inaccessible. Such eruptions may be capable of destabilising that ice sheet.  相似文献   

17.
Hydrofracture systems are being increasingly recognized within subglacial to ice‐marginal settings and represent a visible expression of the passage of pressurized meltwater through these glacial environments. Such structures provide a clear record of the fluctuating hydrostatic pressure and of the resulting brittle fracturing of the host sediment/bedrock and the pene‐contemporaneous liquefaction and introduction of sediment‐fill. A detailed macro‐ and microstructural study of a hydrofracture system cutting Devonian sandstone bedrock exposed at the Meads of St John, near Inverness (NE Scotland), has revealed that this complex multiphase system was active over a prolonged period and accommodated several phases of fluid flow. The main conduits that fed the hydrofracture system are located along bedding within the sandstone, with the site of the wider, steeply inclined to subvertical, transgressive linking sections being controlled by the contemporaneous development of high‐angle fractures and normal faults, the latter occurring in response to localized extension within the bedrock. A comparison with published engineering hydraulic fracturing data indicates that the various stages of sediment‐fill deposited during a flow event can be directly related to the fluctuation in overpressure during hydrofracturing. A model is proposed linking the evolution of this hydrofracture system to the retreat of the overlying Findhorn glacier. The results of this study also indicate that the development and repeated reactivation of subglacial hydrofracture systems can have a dramatic effect on the permeability of the bed, influencing the potential for overpressure build‐up within the subglacial hydrogeological system, and facilitating the migration of meltwater beneath glaciers and ice sheets.  相似文献   

18.
Land‐terminating parts of the west Greenland ice sheet have exhibited highly dynamic meltwater regimes over the last few decades including episodes of extremely intense runoff driven by ice surface ablation, ponding of meltwater in an increasing number and size of lakes, and sudden outburst floods, or ‘jökulhlaups’, from these lakes. However, whether this meltwater runoff regime is unusual in a Holocene context has not been questioned. This study assembled high‐resolution topographical data, geological and landcover data, and produced a glacial geomorphological map covering ~1200 km2. Digital analysis of the landforms reveals a mid‐Holocene land‐terminating ice margin that was predominantly cold‐based. This ice margin underwent sustained active retreat but with multiple minor advances. Over c. 1000 years meltwater runoff became impounded within numerous and extensive proglacial lakes and there were temporary connections between some of these lakes via spillways. The ice‐dams of some of these lakes had several quasi‐stable thicknesses. Meltwater was apparently predominantly from supraglacial sources although some distributary palaeochannel networks and some larger bedrock palaeochannels most likely relate to mid‐Holocene subglacial hydrology. In comparison to the geomorphological record at other Northern Hemisphere ice‐sheet margins the depositional landforms in this study area are few in number and variety and small in scale, most likely due to a restricted sediment supply. They include perched fans and deltas and perched braidplain terraces. Overall, meltwater sourcing, routing and the proglacial runoff regime during the mid‐Holocene in this land‐terminating part of the ice sheet was spatiotemporally variable, but in a manner very similar to that of the present day.  相似文献   

19.
冰川表面水文过程研究进展   总被引:1,自引:1,他引:0  
杨康  刘巧 《冰川冻土》2016,38(6):1666-1678
冰面水文过程是冰川径流过程的重要组成部分,对于冰川运动与物质平衡具有重要影响。冰川表面在太阳辐射、冰川物理性质、冰面地形和成冰带空间分布等多种因素影响下消融,形成以冰面水系为主线,锅穴、冰裂隙、冰面湖等为端点的冰面融水输送与分配体系。深入理解冰面水文过程,掌握冰川表面融水的输送、存储与释放,对于研究短时间尺度的冰川融水径流过程、探索冰川动态响应机理具有重要意义。总结回顾了目前国内外冰面水文过程的研究现状,提出了该领域有待解决的主要科学问题。  相似文献   

20.
We provide evidence for the subglacial to ice‐marginal successive deposition of the Lohtaja?Kivijärvi ice lobe margin esker influenced by the changes in the meltwater delivery and proglacial water depth within the Finnish Lake District lobe trunk during the last deglaciation in Finland. The study is mostly based on the sedimentological data from the 100 km long esker chain with 15 logged sites. The long breaks in the lobe margin esker and the re‐emerged deposition along the stable position of the subglacial meltwater route were related to the discontinuities and reappearances of the neighbouring eskers. This considerable variability in the meltwater discharge and debris transport under the described deglacial conditions cannot be explained by markedly decreased meltwater production due to palaeoclimatic factors or lack of debris within the trunk region. The primary control on the changes in meltwater availability and related esker deposition was thus due to the spatial and temporal changes in ice mass properties and shifting of the meltwater flow paths within the trunk. These changes were initiated by the topographically higher and partly supra‐aquatic Suomenselkä watershed area with subsequent deepening of the proglacial water during the deglaciation. The understanding of the long‐lived esker deposition along the former ice‐stream trunk margin adds to the evaluation of palaeoglaciological reconstructions and geomorphologically based spatial models for ice‐stream landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号