首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on high-resolution Chirp seismic, multibeam bathymetry and side scan sonar data collected in the ?zmir Gulf, Aegean Sea in 2008 and 2010, gas-related structures have been identified, which can be classified into three categories: (1) shallow gas accumulations and gas chimneys, (2) mud diapirs, and (3) active and inactive pockmarks. On the Chirp profiles, shallow gas accumulations were observed along the northern coastline of the outer ?zmir Gulf at 3-20 m below the seabed. They appear as acoustic turbidity zones and are interpreted as biogenic gas accumulations produced in organic-rich highstand fan sediments from the Gediz River. The diapiric structures are interpreted as shale or mud diapirs formed under lateral compression due to regional counter-clockwise rotation of Anatolian microplate. Furthermore, the sedimentary structure at the flanks suggests a continuous upward movement of the diapirs. Several pockmarks exist close to fault traces to the east of Hekim Island; most of them were associated with acoustic plumes indicating active degassing during the survey period in 2008. Another Chirp survey was carried out just over these plumes in 2010 to demonstrate if the gas seeps were still active. The surveys indicate that the gas seep is an ongoing process in the gulf. Based on the Chirp data, we proposed that the pockmark formation in the area can be explained by protracted seep model, whereby sediment erosion and re-distribution along pockmark walls result from ongoing (or long lasting) seepage of fluids over long periods of time. The existence of inactive pockmarks in the vicinity, however, implies that gas seepage may eventually cease or that it is periodic. Most of the active pockmarks are located over the fault planes, likely indicating that the gas seepage is controlled by active faulting.  相似文献   

2.
海底麻坑是由地层中流体向海底快速喷发或缓慢渗漏所形成的一种凹陷地貌,对其形态及成因机理进行深入研究具有重要意义.本研究基于高分辨率多波束地形、侧扫声纳、浅地层剖面及多道地震探测数据,对舟山群岛东部青浜岛海域发育的麻坑及其微地貌进行研究,分析表明:研究区发育有3个大型麻坑,并受到NE—SW向底流的改造而出现不同程度沿此方...  相似文献   

3.
During a recent oceanographical-geophysical survey carried out in the southeastern part of the Gulf of Patras in Western Greece for the construction of an outfall, an active pockmark field was found. The pockmark field was formed in soft layered Holocene silts. The pockmarks are associated with acoustic anomalies attributed to gas-charged sediments. The pockmarks vary in size and shape from 25 to 250 m in diameter and from 0.5 to 15 m in depth and are among the largest and deepest observed in the world.

On July 14th, 1993, during the survey, a major earthquake of magnitude 5.4 on the Richter scale occurred in the area. During the 24 hour period prior to the earthquake the bottom water temperature anomalously increased on three occasions, whilst for a few days after the earthquake it was noted that the majority of the pockmarks were venting gas bublles.

It is considered that the three abrupt sea-water temperature increases were probably the result of upward migrating high-temperature gas bubbles in the water column. It is further suggested that the earthquake was the triggering mechanism and that the gas expulsion was caused by the reduction in the pore volume in the sediments resulting from changes in the stress regime prior to the earthquake. Therefore, it can be suggested that in seismic areas adjacent to pockmark fields, earthquake prediction may be achieved by monitoring the water temperature and/or the rate of gas venting in the pockmark field.

Our analysis indicates that the pockmark field in the Patras Gulf has formed slowly during the Holocene by continuous gas venting, which is periodically being interrupted by short-duration events of enhanced gas seepage triggered by earthquakes.  相似文献   


4.
Two pockmark fields, located along the coastal zone of the Patras and Corinth gulfs, Greece were surveyed in detail. The pockmark fields, which are 30 km apart, are formed in shallow waters at depths of 20–40 m and are about 0.5–1 km from the shoreline. The oceanographic data suggest that two different mechanisms were responsible for their formation. The pockmark field in the Patras Gulf appears to have been formed as a result of methane seepage from the seabed, whereas the field in the Corinth Gulf appears to have resulted from groundwater seepage.  相似文献   

5.
Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan   总被引:2,自引:0,他引:2  
In order to understand gas hydrate related seafloor features in the near shore area off SW Taiwan, a deep-towed sidescan sonar and sub-bottom profiler survey was conducted in 2007. Three profiles of high-resolution sub-bottom profiler reveal the existence of five gas seeps (G96, GS1, GS2, GS3 and GS4) and one pockmark (PM) in the study area. Gas seeps and pockmark PM are shown in lines A and C, while no gas venting feature is observed along line B. This is the first time that a gas-hydrate related pockmark structure has been imaged off SW Taiwan. The relatively high backscatter intensity in our sidescan sonar images indicates the existence of authigenic carbonates or chemosynthetic communities on the seafloor. More than 2,000 seafloor photos obtained by a deep-towed camera (TowCam) system confirm the relatively high backscatter intensity of sidescan sonar images related to bacteria mats and authigenic carbonates formation at gas seep G96 and pockmark PM areas. Water column gas flares are observed in sidescan sonar images along lines A and C. Likewise, EK500 echo sounder images display the gas plumes above gas seep G96, pockmark PM and gas seep GS1; the gas plumes heights reach about 150, 100 and 20 m from seafloor, respectively. Based on multichannel seismic reflection (MCS) profiles, an anticline structure trending NNE-SSW is found beneath gas seep G96, pockmark PM and gas seep GS2. It implies that the gas venting features are related to the anticline structure. A thermal fluid may migrate from the anticline structure to the ridge crest, then rises up to the seafloor along faults or fissures. The seafloor characteristics indicate that the gas seep G96 area may be in a transitional stage from the first to second stage of a gas seep self-sealing process, while the pockmark PM area is from the second to final stage. In the pockmark PM area, gas venting is observed at eastern flank but not at the bottom while authigenic carbonates are present underneath the pockmark. It implies that the fluid migration pathways could have been clogged by carbonates at the bottom and the current pathway has shifted to the eastern flank of the pockmark during the gas seep self-sealing process.  相似文献   

6.
High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world’s largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir near Santa Barbara, California. In general, the relationship between terrestrial gas seepage, migration pathways, and hydrocarbon reservoirs has been difficult to assess, in part because the detection and mapping of gas seepage is problematic. For marine seepage, sonar surveys are an effective tool for mapping seep gas bubbles, and thus spatial distributions. Seepage in the COP seep field occurs in an east–west-trending zone about 3–4 km offshore, and in another zone about 1–2 km from shore. The farthest offshore seeps are mostly located near the crest of a major fold, and also along the trend of major faults. Significantly, because faults observed to cut the fold do not account for all the observed seepage, seepage must occur through fracture and joint systems that are difficult to detect, including intersecting faults and fault damage zones. Inshore seeps are concentrated within the hanging wall of a major reverse fault. The subsurface model lacks the resolution to identify specific structural sources in that area. Although to first order the spatial distribution of seeps generally is related to the major structures, other factors must also control their distribution. The region is known to be critically stressed, which would enhance hydraulic conductivity of favorably oriented faults, joints, and bedding planes. We propose that this process explains much of the remaining spatial distribution.  相似文献   

7.
Integrating novel and published swath bathymetry (3,980 km2), as well as chirp and high-resolution 2D seismic reflection profiles (2,190 km), this study presents the mapping of 436 pockmarks at water depths varying widely between 370 and 1,020 m on either side of the Strait of Gibraltar. On the Atlantic side in the south-eastern Gulf of Cádiz near the Camarinal Sill, 198 newly discovered pockmarks occur in three well localized and separated fields: on the upper slope (n=14), in the main channel of the Mediterranean outflow water (MOW, n=160), and on the huge contourite levee of the MOW main channel (n=24) near the well-known TASYO field. These pockmarks vary in diameter from 60 to 919 m, and are sub-circular to irregularly elongated or lobate in shape. Their slope angles on average range from 3° to 25°. On the Mediterranean side of the strait on the Ceuta Drift of the western Alborán Basin, where pockmarks were already known to occur, 238 pockmarks were identified and grouped into three interconnected fields, i.e. a northern (n=34), a central (n=61) and a southern field (n=143). In the latter two fields the pockmarks are mainly sub-circular, ranging from 130 to 400 m in diameter with slope angles averaging 1.5° to 15°. In the northern sector, by contrast, they are elongated up to 1,430 m, probably reflecting MOW activity. Based on seismo-stratigraphic interpretation, it is inferred that most pockmarks formed during and shortly after the last glacial sea-level lowstand, as they are related to the final erosional discontinuity sealed by Holocene transgressive deposits. Combining these findings with other existing knowledge, it is proposed that pockmark formation on either side of the Strait of Gibraltar resulted from gas and/or sediment pore-water venting from overpressured shallow gas reservoirs entrapped in coarse-grained contourites of levee deposits and Pleistocene palaeochannel infillings. Venting was either triggered or promoted by hydraulic pumping associated with topographically forced internal waves. This mechanism is analogous to the long-known effect of tidal pumping on the dynamics of unit pockmarks observed along the Norwegian continental margin.  相似文献   

8.
About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15–40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven hydraulic pumping in gas-charged pockmarks represents a good candidate as large-scale short-term triggering mechanism of pockmark activation, in addition to episodic regional seismic activity.  相似文献   

9.
A marine controlled source electromagnetic (CSEM) campaign was carried out in the Gulf of Mexico to further develop marine electromagnetic techniques in order to aid the detection and mapping of gas hydrate deposits. Marine CSEM methods are used to obtain an electrical resistivity structure of the subsurface which can indicate the type of substance filling the pore space, such as gas hydrates which are more resistive. Results from the Walker Ridge 313 study (WR 313) are presented in this paper and compared with the Gulf of Mexico Gas Hydrate Joint Industry Project II (JIP2) logging while drilling (LWD) results and available seismic data. The hydrate, known to exist within sheeted sand deposits, is mapped as a resistive region in the two dimensional (2D) CSEM inversion models. This is consistent with the JIP2 LWD resistivity results. CSEM inversions that use seismic horizons provide more realistic results compared to the unconstrained inversions by providing sharp boundaries and architectural control on the location of the resistive and conductive regions in the CSEM model. The seismic horizons include: 1) the base of the gas hydrate stability zone (BGHSZ), 2) the top of salt, and 3) the top and bottom of a fine grained marine mud interval with near vertical hydrate filled fractures, to constrain the CSEM inversion model. The top of salt provides improved location for brines, water saturated salt, and resistive salt. Inversions of the CSEM data map the occurrence of a ‘halo’ of conductive brines above salt. The use of the BGHSZ as a constraint on the inversion helps distinguish between free gas and gas hydrate as well as gas hydrate and water saturated sediments.  相似文献   

10.
Recently developed high-resolution profiling (multibeam, sonar) and surface sampling were used to map seafloor morphology of the Gulf of Cádiz middle continental slope. Multichannel seismic profiling has made it possible to elucidate the geologic origin of these features as well as the main triggering mechanisms of gas-related morphologies, principally mud volcanoes, carbonate mud mounds, pockmarks and slides. Throughout the entire Gulf of Cádiz, from the continental slope to the shelf and even on land, a close correlation between morphology and gas mobility and associated diapirism can be observed. The middle slope area is strongly deformed by several diapiric ridges, named Guadalquivir, Cádiz and Doñana. Most of the diapirs identified in this study are related to the Allochthonous Unit of the Gulf of Cádiz, a chaotic body emplaced during the Tortonian, containing salt and shale nappes affected by later gravitational extension collapse and reactivated compression thrusts. It can be proposed that diapirism and related tectonics provided gas migration pathways.  相似文献   

11.
Hundreds of depressions (pockmarks) were found within a 40 square kilometer area of the sea floor near the head of Penobscot Bay, Maine. These roughly circular depressions range in diameter from 10 to 300 meters and extend as much as 30 meters below the surrounding sea floor. The pockmarks have formed in marine mud of Holocene age, which unconformably overlies glaciomarine deposits.The presence of shallow interstitial gas in the mud suggests that the pockmarks are related to the excipe of gas from the sediments, although other factors must be involved.  相似文献   

12.
Travel-time inversion of wide-angle ocean-bottom seismic (OBS) data results in detailed P-wave velocity models of the shallow sub-seabed beneath the Nyegga pockmark field. The area lies on the northern flank of the Storegga Slide on the mid-Norwegian margin. Velocity anomalies indicate two low P-wave velocity zones (LVZs) providing evidence for the presence of gas-rich fluids in the subsurface at Nyegga. Integrating the velocity results with 2D and 3D reflection seismic data demonstrates that LVZs coincide with zones of high-amplitude reflections that allow mapping the extent of the fluids in the subsurface. The upper fluid accumulation zone corresponds to a velocity inversion of ∼250 m/s and occurs at a depth of about 250 mbsf. The lateral extent is documented in two distinct areas. The westward area is up to 40 m thick where gas-rich fluids beneath a bottom-simulating reflection indicate that fluids may be trapped by gas hydrates. The eastward zone is up to 60 m thick and comprises a contourite deposit infilling a paleo-slide scar. On top, glacigenic debris flow deposits provide a locally effective seal for fluids. The second velocity inversion of ∼260 m/s extends laterally at about 450 mbsf with decreasing thickness in westward direction. Based on effective-medium theory the gas saturation of pore space in both layers is estimated to be between 0.5 and <1% assuming a homogeneous distribution of gas. Fluids probably originate from deeper strata approximately at the location of the top of the Helland-Hansen Arch. Fluids migrate into the second LVZ and are distributed laterally. Fluids migrate into shallower strata or are expelled at the seabed through the formation of vertical fluid migration features (VFMFs), so-called chimneys. The distribution of the chimneys is clearly linked to the two fluid accumulation zones in the subsurface. A conceptual model draws on the major controlling factors for fluid migrations at specific locations within Nyegga. Fluid migrations vary according to their actual position with respect to the prograding Plio–Pleistocene sedimentary wedge.  相似文献   

13.
The Nyegga region, located at water depths of about 600–800 m on the NW European continental margin, contains more than 200 pockmarks. Recently collected TOPAS seismic profiles and EM1002 bathymetric records now provide high-resolution information on their seabed and shallow sub-seabed geological setting. The identified pockmarks are up to 15 m deep, between 30 m and 600 m across and reach a maximum area of ca. 315,000 m2. The pockmarks are sediment-empty features. They do not have any preferred direction of orientation and show large variations in their shape. The pockmarks are restricted to a <16.2 cal. ka old sediment unit. This unit comprises sandy mud and is characterised by sedimentation rates of ca. 1 mm/year. The pockmarks are localised over a thick late Plio-Pleistocene prograding sediment package and a polygonal faulted Miocene-Oligocene ooze-rich unit. The late Plio-Plistocene deposits host bottom simulating reflectors, indicative of gas hydrate-bearing sediments. Inspection of the newly collected high-resolution dataset, combined with previously analysed sediment cores and 2D multichannel seismic profiles, reveals that the Nyegga pockmark field does not show any strong relationship between seabed features, sub-seabed structures and the sedimentary setting. This suggests a more complex evolution history of the Nyegga pockmark field then previously thought.  相似文献   

14.
海底天然气渗漏是海洋环境中广泛分布的自然现象,在世界各大洋中都有发现。海底渗漏可以极大地改变海底地貌特征,形成多种与之相关的微地貌类型。海底渗漏和天然气水合物的赋存具有密切的关系,海底渗漏区常伴有埋藏浅、饱和度高的天然气水合物。对南海东北部陆坡海域浅地层剖面、多波束测深和地震反射剖面等资料进行综合研究,识别出海底麻坑、海底丘状体、大型海底圆丘、泥火山等与海底天然气渗漏有关的微地貌类型,且麻坑、海底丘状体/大型海底圆丘、泥火山微地貌分别代表了浅覆盖层快速天然气渗漏、浅覆盖层中等速度天然气渗漏和厚覆盖层快速天然气渗漏3种天然气渗漏模式。以海底丘状体微地貌及声空白反射特征的浅层天然气聚集带,成为块状水合物最理想的发育场所,这可能成为南海北部陆坡勘察块状水合物的重要识别标志。  相似文献   

15.
Through 10 years of support from the Minerals Management Service Association of American State Geologists' Continental Margins Program we have mapped along the Maine coast, seaward to the 100 m isobath. In all, 1,773 bottom sample stations were occupied, 3,358 km of side-scan sonar and 5,011 km of seismic reflection profiles were gathered. On the basis of these data, a surficial sediment map was created for the Maine inner continental shelf during the Year 8 project, and cores and seismic data were collected to evaluate sand thickness during Years 9 and 10. Sand covers only 8 % of the Maine shelf, and is concentrated seaward of beaches off southern Maine in water depths less than 60 m. Sand occurs in three depositional settings: (1) in shoreface deposits connected dynamically to contemporary beaches; (2) in submerged deltas associated with lower sea-level positions; and (3) in submerged lowstand shoreline positions between 50 and 60 m. Seismic profiles over the shoreface off Saco Bay, Wells Embayment, and off the Kennebec River mouth each imaged a wedge-shaped acoustic unit which tapered off between 20 and 30 m. Cores determined that this was sand that was underlain by a variable but thin (commonly 1 m) deposit of estuarine muddy sand and a thick deposit of glacial-marine mud. Off Saco Bay, more than 55 million m3 of sand exists in the shoreface, compared with about 22 million m3 on the adjacent beach and dunes. Seaward of the Kennebec River, a large delta deposited between 13 ka and the present time holds more than 300 million m3 of sand and gravel. The best sorted sand is on the surface nearshore, with increasing amounts of gravel offshore and mud beneath the surficial sand sheet. Bedforms indicate that the surficial sand is moved by waves to at least 55 m depth. Seaward of the Penobscot River, no significant sand or gravel was encountered. Muddy estuarine sediments overlie muddy glacial-marine sediment throughout the area offshore area of this river. No satisfactory explanation is offered for lack of a sandy delta seaward of Maine's largest river. Lowstand-shoreline deposits were cored in many places in Saco Bay and off the Kennebec River mouth. Datable materials from cores indicated that the lowstand occurred around 10.5 ka off the Kennebec. Cores did not penetrate glacial-marine sediment in the lowstand deposits, and seismic profiles were ambiguous about the vertical extent of sand in these units. For these reasons, no total thickness of sand was determined from the lowstand deposits, but given the area of the surficial sand, the volume is probably in the hundreds of millions of cubic meters.  相似文献   

16.
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999–2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents.  相似文献   

17.
Side-scan sonar mapping and ground-truthing of the Norwegian–Barents–Svalbard continental margin shed new light on shelf glaciation, mass wasting, hydrates, and features like the Håkon Mosby mud volcano (HMMV), reflecting upward mobility of gas, pore fluids, and sediments. Detailed HMMV examination revealed thermal gradients to 10°/m, bottom-water CH4 and temperature anomalies, H2S- and CH4-based chemosynthetic ecosystems, and subbottom methane hydrate (to 25%). Seismic and chemical data suggest HMMV origins at 2–3?km depth within the 6-km-thick depocenter. The HMMV and mound fields bordering the Bjørnøyrenna slide valley and pockmarks bordering the Storegga slide may all have formed in response to sediment failure.  相似文献   

18.
Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.  相似文献   

19.
The northern Gulf of Mexico is dominated by salt tectonics, resulting fracturing and numerous seafloor seeps and vents. Woolsey Mound, site of the Gulf of Mexico Hydrates Research Consortium's seafloor observatory, has been investigated extensively via surveys, direct sampling and seafloor instrument systems. This study presents an innovative approach to seismic data interpretation, integrating three different resolution datasets and maximizing seismic coverage of the complex natural hydrocarbon plumbing system at Woolsey Mound.3D industry seismic data reveal the presence of a salt body at in the shallow subsurface that has generated an extended network of faults, some extending from the salt body to the seafloor (master faults). Higher resolution seismic data show acoustic wipe-out zones along the master faults with expulsion features – seafloor pockmarks and craters – located immediately above them and associated, in the subsurface, with high-amplitude, negative anomalies at constant depth of 0.2 s TWTT b.s.f., interpreted as free gas. Since pockmarks and craters provide pathways for hydrocarbons to escape from depth into the water column, related sub-surface seismic anomalies may indicate free gas at the base of the gas hydrates stability zone (GHSZ). Fluid flow and gas hydrates formation are segmented laterally along faults. Gas hydrates formation and dissociation vary temporally in the vicinity of active faults, and can temporarily seal them as conduits for thermogenic fluids. Periodic migrations of gases and other fluids may perturb the GHSZ in terms of temperature and pressure, producing the observed lack of classical BSRs.  相似文献   

20.
《Marine Geology》2005,219(1):1-17
The El Arraiche field is a new mud volcano field discovered near the Moroccan shelf edge in the Gulf of Cadiz that consists of 8 mud volcanoes in water depths from 200 to 700 m. The largest mud volcano in the field (Al Idrissi mud volcano) is 255 m high and 5.4 km wide. The cluster was discovered during a survey with the RV Belgica and studied further during Leg 2 of the TTR 12 survey onboard the R/V Prof Logachev. The 2002 surveys yielded detailed multibeam bathymetry over a 700 km2 study area, dense grids of high-resolution seismic data, deep-tow sub bottom profiles, sidescan sonar mosaics over the major structures. Selected video imagery lines, video guided grab samples, dredge samples, gravity cores, and box cores were collected for groundtruthing purposes. Eight mud volcanoes in water depths from 200 to 700 m cluster around two, sub-parallel anticlines and associated active extensional faults. Rock clasts and regional seismic data locate the El Arraiche field over a Late Miocene–Pliocene extensional basin. The onset of mud volcanic activity is estimated at about 2.4 Ma and probably roots in the Cretaceous–Miocene accretionary wedge. Stacked outflows are visible up to a depth of about 500 m below the sea floor. The occurrence of long-lived mud volcanoes bear witness to continued overpressure generation at depth, either by in situ oil and gas generation or by focussed flow and accumulation in the area. Geochemical analyses of pore water from cores demonstrate the presence of thermogenic hydrocarbon processes. The activity of the mud volcanoes is indicated by the thickness of hemi-pelagic sediments covering extruded mud breccia, the occurrence of seep-typical fauna, the degree of mixing between thermogenic and biogenic hydrocarbon processes, or the depth to the base of the sulphate reduction zone. Given its structural setting and the evidence of thermogenic and biogenic hydrocarbons, the area has promising hydrocarbon potential but remains untested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号