首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze ultraviolet spectra of DF Tau, a binary system whose primary component is a classical T Tauri star. The spectra were obtained from the Hubble Space Telescope and the IUE satellite. The stellar emission in the wavelength range covered is shown to originate in an accretion shock wave. The gas infall velocity is ~250 km s?1. The accreted-gas density is typically N 0≤1011 cm?3, but it can occasionally be higher by one and a half orders of magnitude. The continuum intensity near λ=1900 Å was found to be virtually constant for such a significant change in N 0. The star’s photometric variability is probably attributable to variations in accreted-gas density and velocity, as well as to variations in the area of a hot spot on the stellar surface and in its orientation relative to the observer. The mean accretion rate is $\dot M \sim 3 \times 10^{ - 9} M_ \odot yr^{ - 1}$ . The interstellar extinction for DF Tau is $A_V \simeq 0\mathop .\limits^m 5$ , the stellar radius is ≤2R , and the luminosity of the primary component is most likely no higher than 0.3 L . We argue that the distance to DF Tau is about 70 pc. Upper limits are placed on the primary’s coronal emission measure: EM(T=107 K)<3×1054 cm?3 and EM(T=1.3×106 K)<3×1055 cm?3. Absorption lines originating in the stellar wind were detected in the star’s spectrum. Molecular hydrogen lines have essentially the same radial velocity as the star, but their full width at half maximum is FWHM ?50 km s?1. We failed to explain why the intensity ratio of the C IV λ1550 doublet components exceeds 2.  相似文献   

2.
The ultraviolet spectra of the stars RY Tau and HD 115043 from the Hubble Space Telescope are analyzed. RY Tau belongs to the classical T Tauri stars, while HD 115043 is a young (t~3×108 years), chromospherically active star. The most intense emission lines were identified, and their fluxes were measured. Low-resolution spectra of RY Tau and HD 115043 in the wavelength range 1160–1760 Å exhibit almost the same set of emission lines. However, first, the luminosity of RY Tau in these lines is approximately a factor of 300 higher than that of HD 115043, and, second, the relative line intensities differ greatly. The intensity ratio of the C IV λ1550, Si IV λ1400, and NV λ1240 doublet components is close to 1: 2 in the spectra of both stars. Judging by the continuum energy distribution, the spectral type of RY Tau is later than that of HD 115043. Synchronous flux variability in the C IV λ1550 and He II λ1640 lines in a time of ~20 min was detected in RY Tau. The flux rise in these lines was accompanied by a redshift of the intensity peak in the profiles by~50 km s?1. Intermediate-resolution spectra are used to study line profiles in the spectrum of RY Tau. In particular, the profiles of (optically thin) Si III]λ1892 and C III]λ1909 lines were found to be asymmetric and about 300 km s?1 in width. The (optically thick) C IV λ1550 doublet lines have similar profiles. The Mg II λ2800 doublet lines are also asymmetric, but their shape is different: they consist of a broad (?750 km s?1 at the base) emission component on which an interstellar absorption line shifted from the line symmetry center by about 20 km s?1 is superimposed. The intensity ratio of the Mg II λ2800 doublet components is?1.4. Whether there are molecular hydrogen lines in the spectrum of RY Tau is still an open question. It is shown that the emission lines in the ultraviolet spectrum of RY Tau cannot originate in a hydrostatically equilibrium chromosphere. It is argued that quasi-steady accretion of circumstellar matter is responsible for the emission.  相似文献   

3.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

4.
The plasma mechanism of radio emission in the coronas of late-type stars is shown to be considerably more efficient than that in the solar corona because of the high plasma temperature in their magnetic arches. This is attributable to an increase in the length of plasma-wave conversion into electromagnetic waves and a decrease in the optical depth of collisional wave absorption. Magnetic-arch filamentation results in a decrease in the intensity of the fundamental-tone radio emission and in the relative dominance of the second-harmonic radio emission. The efficiency of the fundamental-tone radio emission increases with plasma density in a coronal arch. The plasma mechanism accounts for the high brightness temperature of the flare radio emission from stars (≥1014 K).  相似文献   

5.
We substantiate the conclusion that the unusual color variability found previously in some eruptive stars is typical of a broad class of nonstationary objects, manifests itself over a wide temperature range (from B0 to K 3), and can be regarded as a new type of stellar variability.  相似文献   

6.
Our observations with the 6-m telescope revealed six new magnetic chemically peculiar (CP) stars among objects with large depressions in the continuum: HDE 293764, BD+17°3622, HD 169887, HDE 231054, HDE 338226, and HDE 343872. The presence of a magnetic field is suspected in several other CP stars. The maximum longitudinal field component B e exceeds 1.5 kG for all six stars; in HDE 293764 and HDE 343872, it reaches 3.8 kG. For each object, we present our magnetic-field measurements and published data on previous studies. The method of searching for magnetic stars based on an analysis of spectrophotometry shows its efficiency.  相似文献   

7.
We systematically investigate the evolution of low-mass (0.35, 0.40, and 0.65M ) helium donors in semidetached binaries with white-dwarf accretors. The initial periods of the binaries are chosen in such a way that the helium abundance in the center of the models at the time of Roche lobe overflow varies between Y c = 0.98 and Y c ? 0.1. The results of our calculations can be used to analyze the formation scenarios and evolutionary status of AM CVn stars. We show that the minimum orbital periods of the semidetached binaries depend weakly on the total mass of the components and the evolutionary phase of the donor at the time of Roche lobe overflow and are 9–10 min. The differences in the mass transfer rates after P orb reaches its minimum in the range P orb ≈ 10–40 min do not exceed a factor of ~2.5. For P orb ? 20 min, the mass-losing stars are weakly degenerate homogeneous cooling objects; the He, C, N, O, and Ne abundances depend on the evolutionary phase at which Roche lobe overflow occurred. For the binaries that are currently believed to be the most probable candidates for AM CVn stars with helium donors, Y ? 0.4, X C ? 0.3, X O ? 0.25, and X N ? 0.5 × 10?2. In the binaries under consideration, once P orb ≈ 40 min has been reached, the mass loss time scale begins to exceed the thermal time scale of the donors, the latter begin to contract, their matter becomes degenerate, and the populations of AMCVn stars with white-dwarf and helium-star progenitors of their donors probably merge together.  相似文献   

8.
Observations with the 6-m telescope revealed eight new magnetic, chemically peculiar stars: HD 29925, HD 40711, HD 115606, HD 168796, HD 178892, HD 196691, HD 209051, and BD+32°2827. Zeeman observations of all these objects have been carried out for the first time. We selected candidates by analyzing the depression profile at a wavelength of λ5200 Å. This technique for selecting candidate magnetic stars was shown to be efficient: we found magnetic fields in 14 of the 15 objects that we selected for our observations with a Zeeman analyzer. A maximum longitudinal field strength B e exceeding 8 kG was found in HD 178892; in HD 209051 and HD196691, B e reaches 3.3 and 2.2 kG, respectively. For the remaining stars, we obtained lower limits of the longitudinal field (more than several hundred G).  相似文献   

9.
We present our calculations of the spectrum and oscillator strengths for the 4f7?(4f65d+4f66s) Eu III transitions. The calculations were performed with Cowan's RCN-RCG-RCE codes in the single-configuration approximation. A comparison of computed level lifetimes with experimental data for three levels shows that the scale of theoretical oscillator strengths could be overestimated by a factor of 3. The theoretical oscillator strengths of red Eu III lines are two orders of magnitude smaller than their astrophysical oscillator strengths derived by Ryabchikova et al. (1999) from the condition of ionization balance. The new oscillator strengths were tested by analyzing the Eu abundance using Eu II and Eu III lines in the spectra of hot peculiar stars (α2 CVn is a typical representative) and cool peculiar stars (β CrB is a typical representative). First, we computed non-LTE corrections, which proved to be significant for α2 CVn. We also analyzed the Eu II λ6645.11-Å line as well as ultraviolet and optical Eu III lines. We show that the new oscillator strengths together with the non-LTE corrections allow the contradiction between the Eu abundances derived by Ryabchikova et al. (1999) separately from optical Eu II and Eu III lines in α2 CVn to be resolved. The new Eu abundance, log(Eu/N tot)=?6.5, also faithfully describes the blended near-ultraviolet resonance Eu III lines. Using the new Eu III oscillator strengths to analyze the spectrum of the cool Ap star β CrB, we found a significant deviation of the n(Eu II)/n(Eu III) ratio from its equilibrium value. For a chemically homogeneous model atmosphere, to obtain the observed intensity of the Eu III λ 6666.35-Å line, the Eu abundance must be increased by two orders of magnitude compared to that required to describe the Eu II λ 6645.11-Å line. We discuss the possibility of explaining the observed intensities of Eu II and Eu III lines in the spectrum of β CrB by the presence of an inhomogeneous atmosphere with Eu concentrated in its uppermost layers. In such atmospheres, the role of non-LTE effects becomes dominant.  相似文献   

10.
We suggest a model based on the representation of the stellar magnetic field as a superposition of a finite number of poloidal and toroidal free decay modes to describe the dynamo action in fully convective stars. For the adopted law of stellar differential rotation, we determined the dynamo number in exceeding which the generation of a cyclically varying magnetic field is possible in stars without a radiative core and derived an expression for the period of the cycle. The dynamo cycles in fully convective stars and in stars with thin convective envelopes are shown to differ qualitatively: first, the distributions of spots in latitude during the cycle are different for these two types of stars and, second, the model predicts a great weakening of the spot formation in fully convective stars at certain phases of the cycle. To compare the theory with observations, we have analyzed the historical light curve for the weak-line T Tauri star V410 Tau and found that its long-term activity is not a well-defined cycle with a definite period—its activity is more likely quasi-cyclic with a characteristic time of ~4 yr and with a chaotic component superimposed. we have also concluded that a redistribution of spots in longitude is responsible for the secular brightness variations in the star. This does not allow the results of photometric observations to be directly compared with predictions of ourmodel, in which, for simplicity, we assumed a symmetry in longitude and investigated the temporal evolution of the spot distribution in latitude. Therefore, we discuss the questions of what and how observations can be compared with predictions of the dynamo theory.  相似文献   

11.
We analyzed the spectra of eight T Tauri stars (T Tau, RY Tau, CO Ori, EZ Ori, GW Ori, GX Ori, V1044 Ori, and SU Aur) in the wavelength range from 1200 to 3100 Å taken with the STIS spectrograph from the Hubble Space Telescope. For each star, we found an upper limit on the interstellar extinction A v , which proved to be lower than the values obtained by different authors from optical observations. For T Tau and RY Tau, we found the upper limits on their luminosities, masses, and radii as well as the bolometric luminosity of the excess emission continuum. The latter is most likely associated with mass accretion from a protoplanetary disk. We show that the bulk of the emission continuum is radiated in the infrared. For these stars, we determined the ratio of the flux in the C IV 1550 doublet lines to the excess-continuum flux. This ratio proved to be two orders of magnitude lower than its values predicted by the accretion-shock (AS ) models developed by Lamzin (1998) and Calvet and Gullbring (1998). This result leads us to believe that for T Tau and RY Tau, the emission continuum originates in the accretion disk and/or in the boundary layer rather than in the AS, as has been assumed previously. This implies that in these stars, only a small fraction of the accreted matter passes through the AS, while the bulk of this matter settles in the equatorial plane of the star, passing through the boundary layer.  相似文献   

12.
We present our 2-year-long photometric (V, R c, I c) observations of the T Tauri star V1184 Tau. They show that the relatively quiet “photometric life” of this object, which ended in 2004 with a sharp brightness decline by four magnitudes, was succeeded by a qualitatively new (in nature) period of activity characterized by high-amplitude irregular photometric variability. Judging by its color variations, the object belongs to the class of UX Ori stars and, hence, variable circumstellar extinction is responsible for its brightness variations. Moreover, the (V?I c)/V color-magnitude diagram for the object is identical to that for UX Ori itself, suggesting that the optical properties of dust grains in the circumstellar space of these stars are similar. At the same time, V1184 Tau is quite dissimilar to UX Ori stars in its light curve, variability amplitude (reaching 4.5 magnitudes in the V band), and some other parameters.  相似文献   

13.
CCD spectra taken with the PFES and CEGS echelle spectrographs attached to the 6-m Special Astrophysical Observatory (Russian Academy of Sciences) telescope and the 2-m Shamakha Astrophysical Observatory (National Academy of Sciences of Azerbaijan) telescope, respectively, were used to study the line-profile variations in the spectrum of the hot supergiant α Cam. No fast (≤1.5 h) line-profile and radial-velocity variations were found. Some of the systematic effects that cause spurious variability are considered. The Hα-profile variability appears symmetric relative to the radial velocity of the star’s center of mass and is attributable to variable blueshifted and redshifted emission and/or absorption components superimposed on a variable photospheric profile. The Hα line shows evidence of a large-scale mass ejection from the stellar surface, which is also traceable in other spectral lines. The He II 4686 line exhibits an inverse P Cyg profile, while the red wing of the He I 5876 line shows weak and variable emission. The fast (on characteristic time scales of shorter than an hour) variability of the He II 4686 profile that was previously revealed by our observations (Kholtygin et al. 2000) is called into question. A comparison of the observational data on the variability of ultraviolet and optical line profiles for the supergiant αCam suggests that nonradial motions are mainly responsible for the radial-velocity and line-profile variability.  相似文献   

14.
Using the Main Stellar Spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a polametric analyzer, we measured the longitudinal magnetic field component B for the T Tauri stars T Tau and AS 507 on January 16 and 18 and February 15, 2003. For both stars, we determined only the upper limits on B from photospheric lines: +15±30 G for T Tau and ?70±90 G for AS 507. The magnetic field of AS 507 was not measured previously, while B for T Tau is lower than its values that we obtained in 1996 and 2002 (B?150±50G), suggesting that the longitudinal magnetic field component in the photosphere of T Tau is variable. We also measured the longitudinal magnetic field component for T Tau in the formation region of the He I 5876 Å emission line. We found B in this region to be ?+650, ?+350, and ?+1100 G on January 16, 18, and February 15, 2003, respectively. Our observations on January 18 and February 15 correspond to virtually the same phase of the star's rotation period, but the profiles of the He I 5876 Å line differ markedly on these two nights. Therefore, we believe that the threefold difference between the B values on these nights does not result from observational errors. We discuss the possible causes of the B variability in the photosphere and the magnetosphere of T Tau.  相似文献   

15.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

16.
17.
Photoelectric (UBVR) observations of the eclipsing variable EQ Ori are presented. The ephemerides of primary minima are refined, and the range of the star’s light variations is determined. All light curves are solved by Lavrov’s direct method, and highly accurate photometric orbital elements are obtained for the system. The magnitudes and colors of each component are calculated and analyzed in two-color (U-B)-(B-V) and (U-B)-(V-R) diagrams. The system’s primary component is classified as a metallic-line Am star. The absolute parameters of the components are estimated, and the binary is classified as a detached system with a subgiant: A0 V and K2 IV. EQ Ori has a faint physical companion, which causes the epochs of primary minimum to be systematically displaced with a period of about 30 years. The expected parameters of the distant companion are estimated. The system’s components are at a pre-ZAMS evolutionary stage, with their age being 2×106 years. EQ Ori is thought to be a member of the Ori I association.  相似文献   

18.
19.
The statistical parallax technique is applied to a sample of 262 RRab Lyrae variables with published photoelectric photometry, metallicities, and radial velocities and with measured absolute proper motions. Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al. 1992) were used as the sources of proper motions; the proper motions from the last three catalogs were reduced to the Hipparcos system. We determine parameters of the velocity distribution for halo [(U 0, V 0, W 0) = (?9±12, ?214 ±10, ? 10, ?16±7) km s ?1 and (σ U , σ V , σ W ) = (164±11, 105±7, 95±7) km s ?1] and thick-disk [(U 0, V 0, W 0) = (?16±8, ?41±7, ?18±5) km s ?1], and [(σ U , σ V , σ W ) = (53±9, 42±8, 26±5) km s ?1] RR Lyrae, as well as the intensity-averaged absolute magnitude for RR Lyrae of these populations: 〈M V 〉 = 0.77 ± 0.10 and 〈M V 〉 = +1.11 ± 0.25 for the halo and thickdisk objects, respectively. The metallicity dependence of the absolute magnitude of RR Lyrae is analyzed (〈M V 〉 = (0.76 ± 0.12) + (0.26 ± 0.26) · ([Fe/H]+1.6)=1.17+0.26 · [Fe/H]). Our results are in satisfactory agreement with the ?M V ?(RR)?[Fe/H]relation from Carney et al. (1992) (〈M V 〉(RR)=1.01+0.15·[Fe/H]) obtained by Baade-Wesselink's method. They provide evidence for a short distance scale: the LMC distance modulus and the distance to the Galactic center are 18.22±0.11 and 7.4±0.5 kpc, respectively. The zero point of the distance scale and the kinematic parameters of the RR Lyrae populations are shown to be virtually independent of the source of absolute proper motions used and of whether they are reduced to the Hipparcos system or not.  相似文献   

20.
We present our JHKLM photometry for R Cas performed during 1988–2000. The pulsation period of R Cas is $P \approx 429\mathop .\limits^d 6$ , with the maximum IR brightness lagging behind the maximum visual brightness by ~0.2 P. The amplitude of light variations appreciably decreases with increasing wavelength at λ≤3 μm. At λ>3 μm, this decrease virtually ceases. There is a step on the ascending branch of IR JHK brightness. The K-L color index increases linearly with K magnitude: $K - L = 0.304K + 1\mathop .\limits^m 20$ . The color temperature dependence, T K-L =f(K), is also linear: T K?L = ?622K + 1100 K. In going from minimum to maximum, the K flux (as well as the bolometric flux) from the star and its color temperature T K-L increase by a factor of ~2.2 and ~1.3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号