首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the vertical structure of Mediterranean explosive cyclones   总被引:1,自引:0,他引:1  
An attempt is made to explore the vertical structure of the surface explosive cyclones in the Mediterranean on a climatological basis during the cold period of the year in order to get a better insight in the interaction between the upper and lower levels responsible for the genesis and evolvement of the phenomenon. The vertical profile of the explosive cyclones was examined with the aid of the vertical tracing software of the University of Melbourne Cyclone Tracking Algorithm, using the 1?×?1° spatial resolution of ERA-40 reanalysis data. It was found that about 57?% of the track steps of surface explosive cyclones extend up to 500?hPa. The north-westward tilting of the surface cyclones with height during the stage of explosive cyclogenesis, with a mean distance of 350?km between mean sea and 500?hPa levels, confirms the importance of baroclinicity. About 45?% of the surface explosive cyclones reached their maximum depth before their 500?hPa counterparts, implying the role of surface processes.  相似文献   

2.
A climatological analysis of Saharan cyclones   总被引:1,自引:0,他引:1  
In this study, the climatology of Saharan cyclones is presented in order to understand the Saharan climate, its variability and its changes. This climatology includes an analysis of seasonal and interannual variations, the identification and classification of cyclone tracks, and a presentation of their chief characteristics. The data used are drawn from the 1980–2009, 2.5° × 2.5°, NCEP/NCAR reanalysis (NNRP I) dataset. It is found that cyclone numbers increase in September–October–November (SON) at 4.9 cyclones per decade, while they decrease in June–July–August at 12.3 cyclones per decade. The identification algorithm constructed 562 tracks, which are categorized into 12 distinct clusters. Around 75 % of the Saharan cyclones originate south of the Atlas Mountains. The percentage of tracks that move over the Sahara is around 48 %. The eastern Mediterranean receives 27 % of the Saharan tracks, while the western basin receives only 17 and 8 % of all the Saharan cyclones decay over the Arabian Peninsula. The maximum cyclonic activity occurs in April. There is a general decrease in the number of tracks in all categories between 1993 and 2009, compared with the period between 1980 and 1992. About 72 % of the Saharan cyclones do not live more than 3 days, and about 80 % of the cyclones in the tracks never reach central pressures 1,000 hPa during their lifetimes. The maximum deepening in the tracks occurs over the western Mediterranean and over northern Algeria.  相似文献   

3.
Midlatitude cyclones are analyzed on a selected region covering most of southern Europe and the western part of the Mediterranean Sea (35–50°N, 10°W–25°E). On the basis of mean sea level pressure fields of the ECMWF (European Centre for Medium-range Weather Forecast) Reanalysis Dataset (ERA-40), detailed evaluation of Mediterranean cyclones is accomplished for the period between 1957 and 2002 on a 1° horizontal resolution grid. Cyclone centers are identified and their paths are tracked with a 6-h time step (using 00 UTC, 06 UTC, 12 UTC, and 18 UTC). Decadal, annual, and seasonal statistical analysis of cyclone tracks includes the study of the genesis, frequency, and activity of the Mediterranean cyclones as well as the variability of cyclone tracks. The results suggest that the cyclone frequency in the western Mediterranean region increased in summer and autumn, and decreased in winter and spring. A special belt-shaped area is identified, which plays a special role in cyclogenesis, and also, the cyclone tracks often remain within this belt. An overall decreasing trend is detected in winter and spring in the entire Mediterranean belt, while cyclone frequency increased in autumn. The largest positive and negative trend coefficients are identified in summer.  相似文献   

4.
Summary  The Mediterranean basin experiences considerable cyclone activity mostly during fall, winter and spring and diminished activity during summer. In this study we present results of synoptic disturbance track analysis for two contrasting winter months and two, near average, summer months over the eastern Mediterranean. The surface and 500 hPa disturbance tracks were subjectively analyzed from two points of view. First, looking at tracks of conventionally defined cyclone centers (eddies) based on actual pressure and height distribution and second, looking at tracks of transient cyclonic disturbances (TRADs), defined as centers of negative deviations from the time mean. The second type of analysis demonstrated a considerable increase in the number of detectable tracks. Over the Mediterranean and vicinity the ratio between the number of surface TRAD tracks to cyclone tracks is, about 2, whereas at 500 hPa the ratio is much higher, about 5. However, the average life span of transient disturbances was only slightly longer than that of conventional cyclones (mainly at 500 hPa). At the surface and at 500 hPa about 50% of the cyclone tracks coincided to a certain extent with TRAD tracks. In summer, when conventional analysis over the eastern Mediterranean yields mostly quasi‐stationary low pressure centers associated with the Persian Gulf Trough, we detected clear signs of transient disturbances. Some interpretations of the differences between cyclones and TRADs in terms of weather in the eastern Mediterranean are also made. Received January 19, 1999Revised June 23, 1999  相似文献   

5.
Summary The average pressure distribution at mean sea level and the vertical structure of synoptic scale surface cyclones (with central pressure less than 1000 hPa) that occur in the Mediterranean region is studied for a 40 year period (1958–1997) on a seasonal and daily basis. The cyclonic occurrences are studied in three regions of enhanced cyclonic activity: gulf of Genoa, Southern Italy and Cyprus. The cyclones are identified with the aid of an objective method based on grid point values, available every 6 hours. The analysis revealed different characteristics of the cyclones that occur in the three regions, reflecting the different mechanisms that are responsible for their occurrence in each region. For the Genoa region the cyclone pressure minimum is located over the gulf, associated with orographic forcing, while surface dynamics occur further south. Over Southern Italy, the pressure minimum covers a wide area, whilst the surface dynamics are found to act in the same region, becoming more important in winter and spring. The pressure minimum of cyclones over Cyprus is located over the land during winter and spring and is influenced by surface dynamics and orography. Received November 7, 2000 Revised July 14, 2001  相似文献   

6.
This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850?hPa with a value?≥450?×?10?6?s?1, and the temperature at 300?hPa being 1°C higher than the average temperature within 15° latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3.  相似文献   

7.
This study is motivated by an interest in obtaining a new automated classification scheme of daily circulation types suitable for use throughout Europe. The classification scheme is performed on 500 hPa geopotential height anomalies (NCEP Reanalysis data, 2.5°×2.5°). Nine grid points represent the study area. Five anticyclonic types (Anw, Ane, A, Asw and Ase) and seven cyclonic types (C, Cnnw, Cwnw, Cwsw, Cssw, Cse, Cne) are defined. Each of the circulation types has a distinct underlying synoptic pattern that produces the expected type and direction of flow over the study area. The classification scheme is applied to three different case studies in the Mediterranean Basin: Greece, Cyprus and central Italy. The precipitation percentage of the cyclonic type and the mean seasonal correlation coefficients for all circulation types are the two criteria used to evaluate the performance of the classification scheme. The ability of the HadAM3P general circulation model to reproduce the mean pattern and frequency of circulation types at the 500 hPa level in comparison to the NCEP dataset for the period 1960–1990 is also evaluated. The percentage of rainfall that corresponds to the cyclonic circulation types is greater than 85% for the three study regions. Furthermore, the correlation coefficients for the three classifications are very encouraging, for nearly all days of the study period. Compared to observations, the GCM is able to capture the mean patterns but not able to replicate exactly the observed variability of the circulation types over the three study regions.  相似文献   

8.
A climatology of extratropical cyclones is presented. Extratropical cyclones, their main characteristics and their predominant tracks, as well as their interannual variability, affect weather in South America. For that purpose, a storm track database has been compiled by applying a cyclone tracking scheme to six-hourly sea level pressure fields, available from the National Center for Environmental Prediction–National Center for Atmospheric Research reanalyses II for the 1979–2003 period. The spatial distribution of the cyclogenesis frequency shows two main centers: one around Northern Argentina, Uruguay, and Southern Brazil in all seasons and the other near to the North Antarctic Peninsula. The lifetime of extratropical cyclones in the South American sector exhibits small seasonality, being typically of the order of 3.0 days during most of the year and slightly higher (3.5 days) in austral summer. The distance travelled by the cyclones formed in the South American sector tends to be smaller than the total paths found in other areas of the Southern Hemisphere. A k-mean clustering technique is used to summarize the analysis of the 25-year climatology of cyclone tracks. Three clusters were found: one storm-track cluster in Northeast Argentina; a second one west of the Andes Cordillera; and a third cluster located to the north of the Antarctic Peninsula (around the Weddell Sea). The influence of the Antarctic Oscillation (AAO) in the variability of extratropical cyclones is explored, and some signals of the impacts of the variability of the AAO can be observed in the position of the extratropical cyclones around 40°S, while the impacts on the intensity is detected around 55°S.  相似文献   

9.
春夏季节黄河气旋经渤海发展时影响因子对比研究   总被引:3,自引:2,他引:1  
苗春生  宋萍  王坚红  牛丹 《气象》2015,41(9):1068-1078
利用2008—2012年台站资料、NCEP(National Centers for Environ mental Prediction) FNL(Final Operational Global Analysis)1°×1°再分析资料,将近5年经过渤海持续发展的黄河气旋分为夏季型和春季型,采用动态合成法对两类气旋的结构和黄渤海海域的热力、动力、水汽等影响因子进行对比分析。结果表明:经过渤海时,夏季型气旋主要伴随大范围的强降水,而春季型气旋主要形成强风区。春夏季黄河气旋均为冷暖交汇的斜压性结构,但夏季型有偏暖中心,斜压性弱于春季型。春季高空急流位于气旋南部,其左侧正涡度区维持气旋的深厚,且气旋后部高空动量下传与锋面二级环流及平坦海面配合有利于气旋低层大风迅速增强。夏季高空急流位于气旋北部,高空强辐散区和低层辐合区配置加强了气旋中的上升运动,有利于气旋强降水和凝结潜热释放。气旋发展阶段,扰动位能向动能的转化,支持气旋动能的维持与加强。湿位涡计算显示,夏季气旋中有深厚的干空气下沉,干湿梯度强,尺度大,有利于气旋的强降水,春季气旋中干湿梯度小,分布零散,对应降水强度和范围均小。黄渤海为气旋主要水汽输送通道,夏季海温相对春季高,水汽充沛,春季水汽辐合量仅为夏季三分之一。海洋下垫面作用对春季气旋影响大,在夏季作用不明显。夏季海面潜热加热影响为主,春季感热加热影响明显。  相似文献   

10.
11.
东亚温带低气压路径   总被引:4,自引:0,他引:4  
王荣华 《气象学报》1963,33(1):15-24
本文利用1951—1960年的亚洲地面天气图,分月統計东亚地区(70°E以东,55°N以南)每2.5°×2.5°經緯格內低压中心通过的頻数,繪制了頻数分布图,确定出低压移动的主要路径,此外,还繪制了冬半年和夏半年低压发生(初現)頻数分布图、頻数百分率的随緯度分布和沿120°E与110°E經线上低压中心通过頻数的各月綜合图。結果得出:1.东亚大陆中緯度西风带的低压主要出現在蒙古人民共和国中部到我国的东北地区,20°N以南不出現溫带低气压;2.45°N以南的我国大陆上低压很弱,大多数不閉合,只有在我国东部或入海后才发展;3.日本东南面海上是低压路径的集中带;4.春季低压出現最为頻繁,秋季次之,夏季我国江淮流域低压有所增多。 最后,对低压路径进行了分类,把东亚的溫带低气压划为五大类和十一亚类,并对各类低压分别作了簡要的叙述。  相似文献   

12.
The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere–ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961–1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region’s weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021–2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 °C) is projected to occur in the region, along with a precipitation decrease by 10–20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.  相似文献   

13.
Occurrence of winter air temperature extremes in Central Spitsbergen   总被引:1,自引:1,他引:0  
The occurrence of daily air temperature extremes in winter in Central Spitsbergen in the period 1975–2008 was analysed. The mean winter temperature was found to be increasing by approximately 1.65°C per decade. Negative extremes were becoming less frequent, decreasing at a rate of approximately 5 days per decade, whereas the frequency of positive extremes showed a small (2 days per decade) but insignificant positive trend. Furthermore, circulation patterns responsible for positive and negative temperature extremes were analysed. Composite maps of the sea level pressure (SLP) and 500-hPa geopotential heights (z500 hPa) means and anomalies were constructed for the days with positive and negative extremes. Circulation patterns causing extremely warm winter days are characterised by a cyclonic centre or a low pressure trough over the Fram Strait. Cyclones located west of Spitsbergen with a warm sector over the archipelago bring warm air masses from the southern quadrant. On extremely cold days, the cyclone centres are usually located over the Barents Sea. This SLP pattern implies airflow from the north and northeast that brings cold Arctic air to the North Atlantic. Another factor in the occurrence of the temperature extremes in Central Spitsbergen is the sea-ice cover. Negative temperature extremes usually occur together with a high concentration of sea ice, particularly in the middle and end of winter.  相似文献   

14.
张颖娴  丁一汇  李巧萍 《气象》2012,38(6):646-656
本文利用欧洲中心再分析数据ERA40的6小时间隔海平面气压场和一种改进的客观判定和追踪方法研究19582001年北半球和东亚地区温带气旋生成频率的气候态、年代际变化及可能原因。结果表明:(1)北半球温带气旋的源地主要位于北美东部(落基山下游地区)、西北大西洋地区、格陵兰至欧洲北部地区、蒙古地区和日本至西北太平洋地区。大洋的西岸和陡峭地形的背风坡有利于大气斜压性的增强和正涡度的发展,从而有利于地面气旋的形成。(2)年、冬季和春季30°~60°N气旋生成数目呈现减少的变化趋势,60°~90°N地区的气旋生成数呈增加的变化趋势。这在一定程度上支持了北半球风暴路径北移的观点。60°N以南和以北的温带气旋数目同北极涛动指数(AO)分别呈现负相关和正相关,这种相关性在年、春季和秋季最为显著。(3)1 958—2001年东亚地区的年气旋数目呈现明显的年代际变化。20世纪60年代至80年代中期40°~60°N、80°~140°E地区气旋数目呈增加趋势,而80年代中期之后温带气旋数目则锐减,主要原因是80年代以后该地区大气斜压性减弱,更高纬度地区的大气斜压性增强,从而导致了气旋源地的北移。在较低纬带的20°~40°N、110°~160°E地区气旋数目线性增加,这主要是由于位于40°~55°N的北太平洋风暴轴有向低纬度偏移的变化趋势造成的。  相似文献   

15.
A heavy rainfall event during the period from 30th of March to 2nd of April 2009 has been studied using upper air and surface data as well as NOAA HYSPLIT model. This observational study attempts to determine factors responsible for the occurrence of heavy rainfall over Iran induced by Mediterranean cyclone, a western severe sub-tropical storm that made rainfall on most regions of the country. On the surface chart, cyclones, anticyclones and weather fronts were identified. The positions of the cold and warm fronts, which extended from a two-core low pressure center, were quite in good agreements with directions of winds i.e., westerly, southerly and easterly flows as well as the regions of precipitation. The heavy rain event occurred due to a Mediterranean cyclone’s activity over the study area, while other conditions were also responsible for this event such as an unstable atmosphere condition with abundant low-level moisture, which the warm and moist air parcels were brought by the southwesterly low-level jet into the country from Persian Gulf, Oman Sea, Indian Ocean and Caspian Sea at lower levels as well as Mediterranean Sea, Red Sea and Persian Gulf at upper levels over the examined period. A strong low-level convergence zone was observed along the wind-shift line between the southwesterly flow because of the low-level jet and the northeasterly flow due to the Russian high pressure. The amount of precipitable water varied between 20 and 24 kg m?2, surface moisture convergence exceeded 2.5 g kg?1 s?1 and the highest CAPE value in the sounding profiles was observed in Birjand site with 921 J kg?1 during the study period. The HYSPLIT model outputs confirmed the observed synoptic features for the examined system over the country.  相似文献   

16.
The Performance of Atmospheric Component Model R42L9 of GOALS/LASG   总被引:26,自引:0,他引:26  
This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG hereafter. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958-97) U.S. National Center for Environmental Prediction (NGEP) global reanalysis and the 22-year (1979-2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integrat  相似文献   

17.
Distribution of pressure systems in the Northern Hemisphere is analyzed in the latitudinal range of 40°–60° from the data of three sets of reanalysis. It is shown that the latitude-mean value of the 500-hPa isobaric surface tends to grow during last decades. By means of analysis of tropospheric frontal zone characteristics, the cases are revealed with blocking deformation of the pressure field. Occurrence frequency of blockings is analyzed.  相似文献   

18.
Summary ?In this study a methodology for grouping seasonal circulation types occurring over an area is introduced. This procedure combines the surface air mass characteristics affecting the area with the synoptic conditions prevailing over it. Factor Analysis and Cluster Analysis are used to derive the circulation types, based on surface meteorological data and surface pressure grid data. The methods are applied to Athens, Greece, using data over the period 1954–1999 for winter (December, January, February) and summer (June, July, August) seasons. The daily circulation types are analyzed at surface level and their temporal evolution is examined via transition matrices. 315 grid points are used covering the area between 25° N to 60° N and 10° W to 40° E. This analysis derives 8 circulation types for the winter and 4 for the summer. A reduction in cyclonic activity and an increase in anticyclonic activity in the Central Mediterranean are detected in the late 1980s and early 1990s during the winter period. During summer the etesian winds and the local flows are dominant over Athens. Received February 20, 2002; accepted January 9, 2003 Published online May 26, 2003  相似文献   

19.
Compared to the 50-year mean climatological value (1961–2010), the precipitation of middle-eastern Inner Mongolia exhibited a significant decrease during the past 10 years (2001–2010). To identify the climatic causes, a comprehensive investigation was conducted by inspecting climatic factors from this 50-year period, which appear to work together in connecting closely to the precipitation. Significant positive correlations with precipitation were found in sea level pressure (SLP) difference between the area of (30° N–20° S; 50–160° E) and the northeastern Pacific Ocean, between the Northern Atlantic and the northeastern Pacific Oceans, and sea surface temperature difference between the northeastern and northwestern Pacific in the previous year, while negative connections were found in the 500-hPa temperature difference between the Antarctic and the belt region around 60° S. During the period of 2001–2010, East Asia was prevailingly controlled by a huge high, which was regarded as one of unfavorable factors for producing rain or snow. Other factors were the enlarged 500 hPa temperature differences between the Antarctic and the zones around 60° S and the Equator, the negative SLP difference between the East Asia, northern Atlantic, and Pacific Oceans. Finally, the unique wind flows and associated moisture transports also played a key role in the precipitation reduction for the first decade of the twenty-first century.  相似文献   

20.
Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts),JMA (Japan Meteorological Agency),NCEP (National Centers for Environment...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号