首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of the solar eclipse of March 29, 2006, in the signals of ULF radio stations, in the intensity of regular radio noise at frequencies of 0.3–10 kHz, and in the number of atmospherics received in Yakutsk mostly from the west have been considered. The observations were performed using a multichannel parallel analyzer-recorder (11 channels in the frequency band 0.47–8.7 kHz), one-point lightning direction and range finder (0.3–100 kHz), narrow-sector radio noise direction-finder (0.3–10 kHz), recorder of signals from VLF radio stations, and broadband radio noise recorder (0.3–100 kHz). A GPS clock was used to synchronize a recorder of signals from VLF radio stations. The effect was observed in radio signals, radio noise, and number of atmospherics from the direction 270° ± 20° counted off clockwise from the north during the last stage of the eclipse (~ 1100–1200 UT), when the lunar shadow approached the line of the nighttime terminator and obscured part of the signal propagation path. The effect was observed as an enhancement of the received signals by a factor of ~1.2, a factor of ~1.4 increase in the number of atmospherics, and a change in the radio station phase values.  相似文献   

2.
The effect of the solar eclipse that occurred on August 1, 2008, on the level of the natural electro-magnetic emission signals in the ELF-VLF range, simultaneously observed at Kamchatka and in Yakutsk, and the variations in the amplitude and phase of signals from the VLF radiostations, registered in Yakutsk, has been considered. The VLF radiostations in Krasnodar, Novosibirsk, and Khabarovsk successively emitted signals at frequencies of 11 905, 12 649, and 14 880 Hz. Based on the observations of the signals from these radiostations, it has been established that the signal amplitudes and phases increased by 3–5% and 30°–45° when the signals crossed the lunar shadow region. The synchronous registration of the ELF-VLF noise emission indicated that a bay-like increase and the following decrease in the emission to the background level was observed at both receiving points during the eclipse from ∼1000 to 1130 UT. This effect was registered at frequencies of 0.6–5.6 kHz in Yakutsk and at lower (30–200 Hz) and higher (2.5–11 kHz) frequencies at Kamchatka. In this case the noise emission intensity maximum was observed when the lunar shadow maximally approached the registration point. At higher frequencies, the emission maximum was observed simultaneously at both points (at 1100 UT) but with a delay relative to the maximum at lower frequencies. The possible causes of the appearance of the solar eclipse effects in the natural ELF-VLF emission are considered.  相似文献   

3.
A broadband seismic array of 7 stations was set up in the western Dabie Mountains (31°20′-31°50′N, 114°30′-115°E). Teleseismic events from May 2001 to November 2001 were collected and analyzed by radial receiver function to determine the S-wave velocity structure of the crust and uppermost mantle. The crustal thickness is 32-38 km beneath the array. The crust-mantle boundary appears as a gently north-dipping velocity discontinuity, but turns to be a velocity gradient beneath a station near the Qiliping shea...  相似文献   

4.
The structure and variability of the currents in the Luzon Strait during spring of 2002 are studied, based on the current measurements at the average position of the mooring station (20°49′57"N, 120°48′12"E) from March 17 to April 15, 2002, satellite geostrophic currents in the Luzon Strait, and the spectral analyses, using the maximum entropy method. The subtidal currents at the mooring station show de-creased amplitudes downward with an anti-cyclonic rotation, suggesting that the currents enter and exit t...  相似文献   

5.
This paper is concerned with a new, previously unknown type of high-frequency (above 4 kHz) VLF emissions that were detected during winter VLF campaigns in Kannuslehto (L ~ 5.5), Finland. These previously unknown emissions have been discovered as a result of the application of special digital filtering: it clears the VLF records from pulse signals of intensive atmospherics, which prevent other kinds of VLF emissions in the same frequency range from being seen on spectrograms. As it appears, aside from wellknown bursts of auroral hisses and discrete quasiperiodic emissions, a previously unknown type of daytime right-hand polarized VLF waves is also present at frequencies above 4 kHz. These emissions can persist for several hours as series of separate short discrete wideband (from 4 to 10 kHz and higher) signals, each with a duration between one and several minutes. It has been found that such signals can be observed almost daily in winter. These emissions sound like bird’s chirping to a human ear; for that reason, they were called “bird emissions.” The dynamic spectra of individual signals often resemble flying birds. The signals are observed during daytime, more often in magnetically quiet conditions preceded by geomagnetic disturbances. As a rule, the occurrence of these bird emissions is accompanied by a slight increase in electron density in the lower ionosphere, which is evidence of the precipitation of energetic (>30 keV) electrons. This raises a number of questions as to where and how the VLF bird emissions are generated and how such emissions, at frequencies greatly exceeding half the electron equatorial gyrofrequency at L ~ 5.5, can reach the Earth’s surface.  相似文献   

6.
The SSQ-1 Digital Tape Recording Horizontal Pendulum Tiltmeter is an instrument of high sensitivity to detect the changes of ground tilt. It uses a quartz horizontal pendulum held by Z?llner bifilar suspension to sense vertical displacement, the eddy-current transducer on the pendulum converts its displacements into electric signals. Then a microcomputer is used for data acquisition and printing as well as digit tape recording. And at the same time, a filtering pen recorder is used for visible recording. The scale value of the instrument is calibrated by computer using the known tilt angle of the bulging plate — mercury cup. The scale value is 0.3–0.5 m(″)/mV. The following are the testing results for the earth tide observation obtained from the east-west component at Baijiatan Seismic Station, Beijing: r(O1): 0.6490±0.0179 α(O1): −3.83°±1.58° r(K1): 0.8049±0.0128 α(K1): 1.40°±0.90° r(M2): 0.6699±0.0040 α(M2): −0.27°±0.34° r(S2): 0.7316±0.0075 α(S2): 2.83°±0.58° r(M3): 0.8497±0.0964 α(M3): 1.61°±6.51° The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 353–359, 1993. In this work also participated Mr. Huai-Wen PAN and Wei-Jin ZHANG. And we here give special thanks to Yun-Zao XI, Qin-Wen XI, Bo-Xong TANG, Yi-Hui CHEN and An-Xu WU for their kind help in the development and test of the instrument. This paper is translated by Mr. Zhong ZHENG.  相似文献   

7.
The lidar ratios at 500 and 1020 nm were derived from POM 01L sun-sky scanning photometer measurements taken at Belsk Geophysical Observatory (long. 20°47′, lat. 51°50′) in the period from 2002 to 2006. The most frequently occurring lidar ratio values for the study period are 50 sr and 30 sr at 500 nm and 1020 nm, respectively. Calculations of lidar ratios for summer and winter seasons have been made as well. Back trajectory analysis was also performed to final aerosol source of origin.  相似文献   

8.
The specific features of a method for radiosounding the lower ionosphere over earthquake epicenters using LF electromagnetic signals of thunderstorm sources (atmospherics) have been considered. The effects of shallow-focus earthquakes with magnitudes larger than 4.0 and their precursors manifest themselves in amplitude characteristics of atmospherics. It has been assumed that variations in the signal characteristics are related to disturbances in the lower ionosphere. According to the results of azimuthal scanning, cross-sectional dimensions of disturbed regions, as a rule, correspond to the dimensions of the first two Fresnel zones for signals at a frequency of 10 kHz. Azimuthal scanning also indicated that the positions of disturbed regions during and before earthquakes could have a certain dynamics and differ from the projection onto the earthquake epicenter. The ratio of the amplitudes of electric and magnetic signal components, in the variations of which seismic effects before earthquakes can also be observed, has been considered. An analysis of the ratio makes it possible to increase the probability of predicting earthquakes when using the characteristics of the electromagnetic signals of lightning discharges as an additional method of complex monitoring of disturbances in the lower ionosphere caused by seismic processes.  相似文献   

9.
The reduction of gravity-field related quantities (e.g., gravity anomalies, geoid heights) due to the topography plays a crucial role in both geodetic and geophysical applications, since in the former it is an intermediate step towards geoid prediction and in the latter it reveals lateral as well as radial density contrasts and infers the geology of the area under study. The computations are usually carried out by employing a DTM and/or a DBM, which describe the topography and bathymetry, respectively. Errors in these DTMs/DBMs will introduce errors in the computed topographic effects, while poor spatial resolution of the topography and bathymetry models will result in aliasing effects to both gravity anomalies and geoid heights, both influencing the accuracy of the estimated solutions. The scope of this work is twofold. First, a validation and accuracy assessment of the SRTM 3″ (90 m) DTM over Greece is performed through comparisons with existing global models as well as with the Greek 450 m national DTMs. Whenever a misrepresentation of the topography is identified in the SRTM data, it is “corrected” using the local 450 m DTM. This process resulted in an improved SRTM DTM called SRTMGr, which was then used to determine terrain effects to gravity field quantities. From the fine-resolution SRTMGr DTMs, coarser models of 15″, 30″, 1′, 2′ and 5′ have been determined in order to investigate aliasing effects on both gravity anomalies and geoid heights by computing terrain effects at variable spatial resolutions. From the results acquired in two test areas, it was concluded that SRTMGr provides similar results to the local DTM making the use of other older global DTMs obsolete. The study for terrain aliasing effects proved that when high-resolution and accuracy gravity and geoid models are needed, then the highest possible resolution DTM should be employed to compute the respective terrain effects. Based on the results acquired from two the test areas a corrected SRTMGr DTM has been compiled for the entire Greek territory towards the development of a new gravimetric geoid model. Results from that analysis are presented based on the well-known remove-compute-restore method, employing land and marine gravity data, EGM08 as a reference geopotential model and the SRTMGr DTM for the computation of the RTM effects.  相似文献   

10.
We have considered spatial distributions of positive lightning discharges in the east of Siberia for the summer seasons of 2003–2007 and properties of their electromagnetic signals with the ELF “slow tail”, which, as is known, can be accompanied by sprites. There are two main regions of positive discharges located in the south and west of Yakutsk. Two other “centers” (the northeastern and the eastern) are located in high-mountainous regions. In these regions the positive discharges intensity can exceed the negative discharge intensity.The electromagnetic signals in the ELF range (usually in the form of two half-cycles) were observed after the VLF atmospherics were recorded in the high-latitude regions. The delay of ELF pulses relative to the corresponding atmospherics was 0–7 ms. The long (up to 350 ms) events of quasi-periodic ELF oscillations with the period of about 7 ms (which corresponds to the quasi-period of ELF pulses) were revealed.  相似文献   

11.
We have analyzed variations in the near-surface atmospheric electric field (Ez) normalized to their daily averages that were simultaneously observed in different high-latitude regions at moderate geomagnetic activity (Kp ∼ 3). The Ez data were measured under fair weather conditions at the Vostok Antarctic research station (Φ′ = −83.5°) in the southern polar cap and at the Hornsund Arctic observatory (Φ′ = 74.0°) on Svalbard close to the polar boundary of the auroral oval in the Northern Hemisphere. It is established that variations in the atmospheric electric field in the polar cap region at the Vostok station are controlled (the correlation coefficient R ∼ 0.7–0.9) by variations in the overhead ionospheric potential. The situation at the Hornsund observatory is more complicated. During intervals when Hornsund occurred below the westward electrojet, the correlation was typically positive with R ∼ 0.60–0.85; however, while this observatory was in the region of the eastern electrojet, the correlation could be negative with R ∼ 0.7–0.8. Normally, during such periods, the westward electrojet was detected polarwards of Hornsund while, according to the SuperDARN radar data, the observatory was located below the negative vortex of the polar ionospheric convection.  相似文献   

12.
Anomalous high frequency PKKPBC signals (displaying a large amount of energy around 2.5 Hz), recorded globally for deep and intermediate depth earthquakes, are compared to PKKPAB signals. The attenuation difference t\textAB* - t\textBC* t_{\text{AB}}^{*} - t_{\text{BC}}^{*} is evaluated from spectral amplitudes in the range 96–111°, being approximately twice the results provided by full-wave theory and PREM (with no low Qμ zone in the lowermost mantle and a nearly infinite QK in the outer core). Most ray paths for such recordings are piercing the D″ region in the proximity of regions where ultra-low velocity zones (ULVZ) have been previously reported beneath the North Atlantic Ocean, the Southwest Pacific and the southwestern part of South America. If BC amplitudes around 2.5 Hz and at low frequencies (0.5–1.5 Hz) are comparable, the observed attenuation difference (in the frequency range 0.2–2.5 Hz) is small (around 0.25 s) and close to the PREM value. The particle motion of the high-frequency PKKPBC at 2.5 Hz is quite similar to that of the raw recording, suggesting a deep source. An explanation for this might be scattering of the BC branch in some very restricted areas of the lowermost mantle. Alternately, the presence of a thin layer with high attenuation in the D″ region would most likely be associated with either the ultra-low velocity zone (ULVZ) or light sediments on the underside of the core-mantle boundary (CMB). Correlated to other methods to investigate the lowermost mantle, the high-frequency PKKPBC can be used to map lateral variations of attenuation above the CMB, possibly associated with the boundary of the superplumes, especially when PKKPAB is observed.  相似文献   

13.
Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985–2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient (), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), and mean wind speed (Ū), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and Ū. 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables q a ′ (T a ′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, q s ′ (T s ′) also greatly influences the low-frequency oscillation of LHF (SHF). Supported by National Natural Science Foundation of China (Grant No. 40675028) and National Basic Research Program of China (Grant No. 2006CB403600)  相似文献   

14.
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103°54.48′W, lat. 12°42.30′N, water depth 2655 m) on the East Pacific Rise near lat 13°N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%–1.85%) and Co (65×10−6−704×10−6) contents, and contain Co+Cu+Zn+Ni> 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13°N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13°N are lower in ΣREE (5.44×10−6–17.01×10−6), with a distinct negative Ce anomaly (0.12–0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13°N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13°N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher. Supported in part by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (Grant No. KZCX3-SW-223), and the Special Foundation for the Tenth Five Plan of COMRA (Grant No. DY105-01-03-1)  相似文献   

15.
16.
Summary A bottom mounted BroadBand ADCP was deployed for about two months in the German Bight (54° 15.3′, N, 7° 35.5′ E) at 40 m depth. The ADCP recorded current data and echo intensity between 3 and 38m depth with a vertical resolution of 1 m. The data, which provide continuous vertical current profiles, are investigated with regard to the vertical variations of residual and tidal currents and kinetic energies. To investigate the temporal variability of the current profiles, the time series are subdivided into 8-day intervals. Furthermore, the data are compared with historical data. According to the ADCP profiles, the water column can be subdivided into three layers: A primarily wind-driven near-surface layer (∼10m), a middepth layer with great directional variability, and a near-bottom layer of about 10 m thickness with a strictly logarithmic current profile.
über das Stromprofil in der Deutschen Bucht: Eine zweimonatige BroadBand ADCP Zeitserie mit hoher vertikaler Aufl?sung
Zusammenfassung Ein am Boden stehender BroadBand ADCP wurde für zwei Monate in der Deutschen Bucht (54° 15.3′ N, 7° 35.5′ E) in 40 m Wassertiefe eingesetzt. Er registrierte Str?mungsdaten und Echointensit?t zwischen 3 und 38 m Wassertiefe mit einer vertikalen Aufl?sung von 1 m. Dieser Datensatz, der kontinuierliche vertikale Stromprofile liefert, wird hinsichtlich der vertikalen Variation von Rest- und Gezeitenstr?men und kinetischer Energie analysiert. Zur Untersuchung der zeitlichen Variabilit?t der Stromprofile wird die Gesamtzeitserie in 8-Tage-Intervalle unterteilt. Ferner werden die Ergebnisse mit historischen Messungen verglichen. Aus den ADCP-Profilen ergibt sich eine prinzipielle Dreiteilung der Wassers?ule: Eine vorwiegend windgetriebene oberfl?chennahe Schicht (∼10m), eine mittlere Schicht mit hoher Richtungsvariabilit?t und eine etwa 10 m m?chtige Bodenschicht mit streng logarithmischem Stromprofil.
  相似文献   

17.
Lastarria volcano (25°10′ S, 68°31′ W; 5,697 m above sea level), located in the Central Andes Volcanic Zone (northern Chile), is characterized by four distinct fumarolic fields with outlet temperatures ranging between 80°C and 408°C as measured between May 2006–March 2008 and April–June 2009. Fumarolic gasses contain significant concentrations of high temperature gas compounds (i.e., SO2, HCl, HF, H2, and CO), and isotopic ratios (3He/4He, δ13C–CO2, δ18O–H2O, and δD–H2O) diagnostic of magmatic gas sources. Gas equilibria systematics, in both the H2O-H2-CO2-CO-CH4 and alkane–alkene C3 system, suggest that Lastarria fumarolic gasses emanate from a superheated vapor that is later cooled and condensed at relatively shallow depths. This two-stage process inhibits the formation of a continuous aquifer (e.g., horizontal liquid layer) at relatively shallow depth. Recent developments in the magmatic gas system may have enhanced the transfer and release of heat causing shallow aquifer vaporization. The consequent pressure increase and aquifer vaporization likely triggered the inflation events beginning in 2003 at the Lastarria volcano.  相似文献   

18.
The gravity-geologic method (GGM) was implemented for 2′ by 2′ bathymetric determinations in a 1.6° longitude-by-1.0° latitude region centered on the eastern end of the Shackleton Fracture Zone in the Drake Passage, Antarctica. The GGM used the Bouguer slab approximation to process satellite altimetry-derived marine free-air gravity anomalies and 6,548 local shipborne bathymetric sounding measurements from the Korea Ocean Research and Development Institute to update the surrounding off-track bathymetry. The limitations of the Bouguer slab for modeling the gravity effects of variable density, rugged bathymetric relief at distances up to several kilometers, were mitigated by establishing ‘tuning’ densities that stabilized the GGM predictions. Tests using two-thirds of the shipborne bathymetric measurements to estimate the remaining third indicated that the tuning densities minimized root-mean-square deviations to about 29 m. The optimum GGM bathymetry model honoring all the ship observations correlated very well with widely available bathymetry models, despite local differences that ranged up to a few kilometers. The great analytical simplicity of GGM facilitates accurately and efficiently updating bathymetry as new gravity and bathymetric sounding data become available. Furthermore, the availability of marine free-air gravity anomaly data ensures that the GGM is more effective than simply extrapolating or interpolating ship bathymetry coverage into unmapped regions.  相似文献   

19.
The measurements using a ground based multi wavelength radiometer (MWR) at Mohal (31°54′N, 77°07′E, 1154 m AMSL) in the Kullu valley of Northwestern Himalayan region show that the spectral aerosol optical depth (AOD) and turbidity coefficient, β, are high in summer, moderate in monsoon season, low in winter and lowest in autumn, while wavelength exponent, α, has an opposite trend. Average annual value of AOD at 500 nm is 0.24±0.01, 0.43±0.02, and 0.28±0.02; that of β is 0.14±0.01, 0.22±0.02, and 0.17±0.03; and that of α is 1.06±0.09, 1.16±0.10, and 0.86±0.13, respectively, for clear, hazy and partially clear sky days. The considerably greater value of β on hazy days indicates more coarse particles in mountain haze. The fractional asymmetry factor (AF) is more negative in summer and autumn months. The AOD and β have significantly positive correlation with temperature and wind speed, suggesting high AODs and turbidity on hot and windy days.  相似文献   

20.
Daily variations in the intensities of atmospherics at 600 Hz and 6 kHz detected at the Lovozero observatory from June to December 2012 were studied. Under quiet geomagnetic conditions, daily variations of atmospherics are shown to be determined by both the waveguide parameters of the Earth’s ionosphere and the activity of storm centers. In summer, a broad daytime maximum of atmospherics flow N hr (the number of atmospherics per hour) is detected most likely due to the lightning activity in mid-latitude regions that are nearer to the observatory than the global storm centers. The daily variations in atmospherics mean amplitudes per hour A hr differ appreciably from the daily variations N hr, reflecting largely the changes in lighting conditions along signal propagation paths. The distribution function of the levels of atmospherics can be approximated by the following formula taken from publications: P(X) = [1 + (X/X 50) k ]?1, where k is a parameter that changes from 2.2 to 3.2 at f = 600 Hz and from 1.5 to 2 at f = 6 kHz under quiet geomagnetic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号