首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K–Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes–Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes–Serra Branca–Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.  相似文献   

2.
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell  相似文献   

3.
The Jemez Mountains volcanic field (JMVF), located in north-central New Mexico, has been a site of basaltic to rhyolitic volcanism since the mid-Miocene with major caldera forming eruptions occurring in the Pleistocene. Eruption of the upper Bandelier Tuff (UBT) is associated with collapse of the Valles Caldera, whereas eruption of the lower Bandelier Tuff (LBT) resulted in formation of the Toledo Caldera. These events were previously dated by K-Ar at 1.12 ± 0.03 Ma and 1.45 ± 0.06 Ma, respectively. Pre-Bandelier explosive eruptions produced the San Diego Canyon (SDC) ignimbrites. SDC ignimbrite “B” has been dated at 2.84 ± 0.07 Ma, whereas SDC ignimbrite “A”, which underlies “B”, has been dated at 3.64 ± 1.64 Ma. Both of these dates are based on single K-Ar analyses.40Ar/39Ar dating of single sanidine crystals from these units indicates revision of the previously reported dates. Isochron analysis of 26 crystals from the UBT gives a common trapped 40Ar/36Ar component of 304.5, indicating the presence of excess 40Ar in this unit, and defines an age of 1.14 ± 0.02 Ma. Isochron analysis of 26 crystals from the LBT indicates an atmospheric trapped component and an age of 1.51 ± 0.03 Ma. An age of 1.78 ± 0.04 Ma, based on the weighted mean of 5 individual analyses, is indicated for SDC ignimbrite “B”, whereas 3 analyses from SDC ignimbrite “A” give a weighted mean age of 1.78 ± 0.07 Ma. Evidence for xenocrystic contamination in the SDC ignimbrites comes from analyses of a correlative air-fall pumice unit in the Puye Formation alluvial fan giving ages of 1.75 ± 0.08 and 3.50 ± 0.09 Ma. The presence of xenocrysts in bulk separates used for the original K-Ar analyses could account for the significantly older ages reported.Geochemical data indicate that SDC ignimbrites are early eruptions from the magma chamber which evolved to produce the LBT, as compositions of SDC ignimbrite “B” are virtually identical to least evolved LBT samples. Differentiation during the 270-ka interval between eruption of SDC ignimbrite “B” and the LBT produced an array of high-silica rhyolite compositions which were erupted to form the LBT. Mixed pumices associated with eruption of the LBT indicated an influx of more mafic magma into the system which produced shifts in some incompatible trace-element ratios. Lavas and tephras of the Cerro Toledo Rhyolite record the geochemical evolution of the Bandelier magma system during the 370-ka interval between eruption of the LBT and the UBT.The combined geochronologic and geochemical data place the establishment and evolution of the Bandelier silicic magma system within a precise temporal framework, beginning with eruption of the SDC ignimbrites at 1.78 Ma, and define a periodicity of 270–370 ka to ash-flow eruptions in the JMVF. These intervals are comparable to those in other multicyclic caldera complexes and are a measure of the timescales over which substantial fractionation of large silicic magma bodies occur.  相似文献   

4.
Llaima is one of the most active volcanoes of the Chilean volcanic front with recent explosive eruptions in 2008 and 2009. Understanding how the volcano evolved to its present state is essential for predictions of its future behavior. The post-glacial succession of explosive volcanic eruptions of Llaima stratovolcano started with two caldera-forming eruptions at ~16 and ~15 ka, that emplaced two large-volume basaltic-andesitic ignimbrites (unit I). These are overlain by a series of fall deposits (unit II) changing from basaltic-andesitic to dacitic compositions with time. The prominent compositionally zoned, dacitic to andesitic Llaima pumice (unit III) was formed by a large Plinian eruption at ~10 ka that produced andesitic surge deposits (unit IV) in its terminal phase. The following unit V represents a time interval of ~8,000 years during which at least 30 basaltic to andesitic ash and lapilli fall deposits with intercalated volcaniclastic sediments and paleosols were emplaced. Bulk rock, mineral, and glass chemical data constrain stratigraphic changes in magma compositions and pre-eruptive conditions that we interpret in terms of four distinct evolutionary phases. Phase 1 (=unit I) magmas have lower large ion lithophile (LIL)/high field strength (HFS) element ratios compared to younger magmas and thus originated from a mantle source less affected by slab-derived fluids. They differentiated in a reservoir at mid-crustal level. During the post-caldera phase 2 (=units II–IV), relatively long residence times between eruptions allowed for increasingly differentiated magmas to form in a reservoir in the middle crust. Fractional crystallization led to volatile enrichment and oversaturation and is the driving force for the large Plinian eruption of the most evolved (unit III) dacite at Llaima, although replenishment by hot andesite probably triggered the eruption. During the subsequent phase 3 (=unit V >3 ka), frequent mafic replenishments at mid-crustal storage levels favored shorter residence times limiting erupted magma compositions to water-undersaturated basaltic andesites and andesites. At around 3 ka, the magma storage level for phase 4 (=unit V <3 ka to present) shifted to the uppermost crust where the hot magmas partly assimilated the granitic country rock. Although water contents of these basaltic andesites were low, the low-pressure storage facilitated water saturation before eruption. The change in magma storage level at 3 ka was responsible for the dramatic increase in eruption frequency compared to the older Llaima history. We suggest that the change from middle to upper crust magma storage is caused by a change in the stress regime below Llaima from transpression to tension.  相似文献   

5.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

6.
Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30–40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550–250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most anorthoclase-phyric lavas, characteristic of Mt. Erebus, are less than 250 ka. All Mt. Erebus flows between about 250 and 90 ka are anorthoclase tephriphonolite in composition.Editorial responsibility: J. Donelly-Nolan  相似文献   

7.
The Amealco Tuff is a widespread (>2880 km2), trachyandesitic to rhyolitic pyroclastic deposit in the central Mexican Volcanic Belt that was erupted from the Amealco caldera at 4.7ǂ.1 Ma. It includes three major ignimbrites, each showing complex mingling of pumice fragments and matrix glass with andesitic to rhyolitic compositions. The different glasses are well mingled throughout each of the pyroclastic-flow deposits. Mingling of glasses may have occurred just before and during the explosive eruptions that produced the pyroclastic flows, as the distinct melts had insufficient time to homogenize. Mingling of glasses is evident in each of the three separate major ignimbrites of the Amealco Tuff; thus, the processes that caused it were repetitive. It is infered that the repetitive mingling of melts was due to repeated mafic magma inputs to an evolved magma chamber.  相似文献   

8.
 The Quaternary White Trachytic Tuffs Formation from Roccamonfina Volcano (southern Italy) comprises four non-welded, trachytic, pyroclastic sequences bounded by paleosols, each of which corresponds to small- to intermediate-volume explosive eruptions from central vents. From oldest to youngest they are: White Trachytic Tuff (WTT) Cupa, WTT Aulpi, WTT S. Clemente, and WTT Galluccio. The WTT Galluccio eruption was the largest and emplaced ∼ 4 km3 of magma. The internal stratigraphy of all four WTT eruptive units is a complex association of fallout, surge, and pyroclastic flow deposits. Each eruptive unit is organized into two facies associations, Facies Association A below Facies Association B. The emplacement of the two facies associations may have been separated by short time breaks allowing for limited reworking and erosion. Facies Association A consists of interbedded fallout deposits, surge deposits, and subordinate ignimbrites. This facies association involved the eruption of the most evolved trachytic magma, and pumice clasts are white and well vesiculated. The grain size coarsens upward in Facies Association A, with upward increases of dune bedform wavelengths and a decrease in the proportion of fine ash. These trends could reflect an increase in eruption column height from the onset of the eruption and possibly also in mass eruption rate. Facies Association B comprises massive ignimbrites that are progressively richer in lithic clast content. This association involved the eruption of more mafic magma, and pumice clasts are gray and poorly vesiculated. Facies Association B is interpreted to record the climax of the eruption. Phreatomagmatic deposits occur at different stratigraphic levels in the four WTT and have different facies characteristics. The deposits reflect the style and degree of magma–water interaction and the local hydrogeology. Very fine-grained, lithic-poor phreatomagmatic surge deposits found at the base of WTT Cupa and WTT Galluccio could record the interaction of the erupting magma with a lake that occupied the Roccamonfina summit depression. Renewed magma–water interaction later in the WTT Galluccio eruption is indicated by fine grained, lithic-bearing phreatomagmatic fall and surge deposits occurring at the top of Facies Association A. They could be interpreted to reflect shifts of the magma fragmentation level to highly transmissive, regional aquifers located beneath the Roccamonfina edifice, possibly heralding a caldera collapse event. Received: 26 August 1996 / Accepted: 27 February 1998  相似文献   

9.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   

10.
Since the onset of their eruptive activity within the Cañadas caldera, about 180 ka ago, Teide–Pico Viejo stratovolcanoes have mainly produced lava flow eruptions of basaltic to phonoltic magmas. The products from these eruptions partially fill the caldera, and the adjacent Icod and La Orotava valleys, to the north. Although less frequent, explosive eruptions have also occurred at these composite volcanoes. In order to assess the possible evolution Teide–Pico Viejo stratovolcanoes and their potential for future explosive activity, we have analysed their recent volcanic history, assuming that similar episodes have the highest probability of occurrence in the near future. Explosive activity during the last 35000 years has been associated with the eruption of both, mafic (basalts, tephro–phonolites) and felsic (phono–tephrites and phonolites) magmas and has included strombolian, violent strombolian and sub-plinian magmatic eruptions, as well as phreatomagmatic eruptions of mafic magmas. Explosive eruptions have occurred both from central and flank vents, ranging in size from 0.001 to 0.1 km3 for the mafic eruptions and from 0.01 to < 1 km3 for the phonolitic ones. Comparison of the Teide–Pico Viejo stratovolcanoes with the previous cycles of activity from the central complex reveals that all them follow a similar pattern in the petrological evolution but that there is a significant difference in the eruptive behaviour of these different periods of central volcanism on Tenerife. Pre-Teide central activity is mostly characterised by large-volume (1–> 20 km3, DRE) eruptions of phonolitic magmas while Teide–Pico Viejo is dominated by effusive eruptions. These differences can be explained in terms of the different degree of evolution of Teide–Pico Viejo compared to the preceding cycles and, consequently, in the different pre-eruptive conditions of the corresponding phonolitic magmas. A clear interaction between the basaltic and phonolitic systems is observed from the products of phonolitic eruptions, indicating that basaltic magmatism is the driving force of the phonolitic eruptive activity. The magmatic evolution of Teide–Pico Viejo stratovolcanoes will continue in the future with a probably tendency to produce a major volume of phonolitic magmas, with an increasing explosive potential. Therefore, the explosive potential of Teide–Pico Viejo cannot be neglected and should be considered in hazard assessment on Tenerife.  相似文献   

11.
Although the oldest volcanic rocks exposed at Pantelleria (Strait of Sicily) are older than 300 ka, most of the island is covered by the 45–50 ka Green Tuff ignimbrite, thought to be related to the Cinque Denti caldera, and younger lavas and scoria cones. Pre-50 ka rocks (predominantly rheomorphic ignimbrites) are exposed at isolated sea cliffs, and their stratigraphy and chronology are not completely resolved. Based on volcanic stratigraphy and K/Ar dating, it has been proposed that the older La Vecchia caldera is related to ignimbrite Q (114 ka), and that ignimbrites F, D, and Z (106, 94, and 79 ka, respectively) were erupted after caldera formation. We report here the paleomagnetic directions obtained from 23 sites in ignimbrite P (133 ka) and four younger ignimbrites, and from an uncorrelated (and loosely dated) welded lithic breccia thought to record a caldera-forming eruption. The paleosecular variation of the geomagnetic field recorded by ignimbrites is used as correlative tool, with an estimated time resolution in the order of 100 years. We find that ignimbrites D and Z correspond, in good agreement with recent Ar/Ar ages constraining the D/Z eruption to 87 ka. The welded lithic breccia correlates with a thinner breccia lying just below ignimbrite P at another locality, implying that collapse of the La Vecchia caldera took place at ~130–160 ka. This caldera was subsequently buried by ignimbrites P, Q, F, and D/Z. Paleomagnetic data also show that the northern caldera margin underwent a ~10° west–northwest (outwards) tilting after emplacement of ignimbrite P, possibly recording magma resurgence in the crust.  相似文献   

12.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

13.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

14.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

15.
The Vulsinian volcanic area in central Italy is made up of several volcanic complexes: the older east part of the area, with the large volcano-tectonic depression — in our opinion not simply a caldera — of the « Lago di Bolsena », and the younger Latera volcano are the major features. With the aid of field studies, paleomagnetic measurements, absolute age determinations and petrologic data, a scheme of the volcanic evolution has been drawn up, dividing the volcanic activity into six stages. Volcanicity started about 0.92 M.y. ago and lasted until subrecent. Three rock series are distinguished: a trachytic-phonolitic magma, mainly found as ash flows, a potassic mafic magma with its salic derivatives. mainly as lavas, scoria and pyroclastics, and a trachybasaltic rockseries, mainly found as lavas and scoria.  相似文献   

16.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

17.
Volcán Las Navajas, a Pliocene-Pleistocene volcano located in the northwestern portion of the Mexican volcanic belt, erupted lavas ranging in composition from alkali basalt through peralkaline rhyolite, and is the only volcano in mainland Mexico known to have erupted pantellerites. Las Navajas is located near the northwestern end of the Tepic-Zacoalco rift and covers a 200-m-thick pile of alkaline basaltic lavas, one of which has been dated at 4.3 Ma. The eruptive history of the volcano can be divided into three stages separated by episodes of caldera formation. During the first stage a broad shield volcano made up of alkali basalts, mugearites, benmoreites, trachytes, and peralkaline rhyolites was constructed. Eruption of a chemically zoned ash flow then caused collapse of the structure to form the first caldera. The second stage consisted of eruptions of glassy pantellerite lavas that partially filled the caldera and overflowed its walls. This stage ended about 200 000 years ago with the eruption of pumice falls and ash flows, which led to the collapse of the southern portion of the volcano to form the second caldera. During the third stage, two benmoreite cinder cones and a benmoreite lava flow were emplaced on the northwestern flank of the volcano. Finally, the calc-alkaline volcano Sanganguey was built on the southern flank of Las Lavajas. Alkaline volcanism continued in the area with eruptions of alkali basalt from cinder cones located along NW-trending fractures through the area. Although other mildly peralkaline rhyolites are found in the rift zones of western Mexico, only Las Navajas produced pantellerites. Greater volumes of basic alkaline magma have erupted in the Las Navajas region than in the other areas of peralkaline volcanism in Mexico, a factor which may be necessary to provide the initial volume of material and heat to drive the differentiation process to such extreme peralkaline compositions.  相似文献   

18.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

19.
The Pomici di Mercato (PdM, 8,010 ± 40 a), also known in the literature as Pomici Gemelle or Pomici di Ottaviano, is one of the oldest Plinian eruptions of Somma-Vesuvius. This eruption occurred after the longest (7 ka) quiescence period of the volcano and was followed by more than 4 ka of repose. The erupted magma is phonolitic in composition. All the products have very low phenocrysts content (less than 3%) and show evidence of mineralogical disequilibria. They contain K-feldspar ± clinopyroxene (salite and diopside) ± plagioclase ± garnet ± biotite ± amphibole ± apatite ± Fe-Ti oxides. Pumice fragments collected at different stratigraphic heights are slightly less evolved and more enriched in radiogenic Sr composition upsection. The glass composition is fairly homogeneous in single pumice fragment and among pumice fragments from different layers. Glass separated from pumice fragments collected at different stratigraphic heights is homogeneous in the Sr-isotope composition (around a value of 0.70717). Glass is in isotopic equilibrium with salite throughout the entire sequence and with diopside at the base of the sequence. Diopside becomes more radiogenic upsection, reaching a value of 0.707458 ± 7, whereas feldspar is consistently slightly less radiogenic than glass. Nd-isotope composition is fairly uniform (ca. 0.51247) through the whole sequence. The isotopic disequilibria among glass, feldspar and diopside, together with the homogeneous isotopic composition of pumice glass in equilibrium with salite, and the mineralogical disequilibria between plagioclase and K-feldspar, imply that most of the diopside and plagioclase crystals are xenocrysts incorporated into the phonolitic magma during residence in a magma chamber and/or during ascent towards the surface. The PdM Tephra are compositionally and isotopically similar to the phonolitic, first-erupted products of the subsequent Pomici di Avellino Plinian eruption. On the basis of this similarity, we suggest that the magma feeding both eruptions resulted from the tapping of a unique magma chamber. Prior to the PdM eruption, this chamber was formed by a large and homogeneous phonolitic magma body. After the PdM eruption, as a consequence of new arrivals of more radiogenic in Sr, less-differentiated magma batches, the magma chamber progressively developed a slightly stratified phonolitic uppermost portion, capping a tephriphonolitic layer, both emitted during the subsequent Pomici di Avellino eruption.  相似文献   

20.
Magmas erupted from Quaternary volcanoes of Southern Andes between 37° and 46° S latitude are mainly basaltic to andesitic. However, PCCVC (40° S) shows a singular magmatic evolution due to the abnormal evacuation of rhyolites, especially in the last 100 ka. In addition, PCCVC is the result of juxtaposing products from the NW-trending alignment of Cordillera Nevada caldera, Cordón Caulle fissure volcano and the Puyehue stratocone. Using 40Ar/39Ar and 14C geochronology it can be established that they evolved since ca. 500 ka as coeval but separated vents with a first stage of shield volcanism, followed by repeated collapses that formed an internal NW-elongated graben. From ca. 100 ka, volcanic activity occurred in both a fissure system (Cordón Caulle) and a central volcano (Puyehue). Holocene explosive eruptions, mainly in the Puyehue crater, accompanied the dome growing along a NW-trending fissure system. Last historical eruptions were in 1921 and 1960 when NW fissures of Cordón Caulle fed rhyodacitic lava flows. In 1960, the fissure eruption was triggered by a remote Mw: 9.5 thrust earthquake.Cordillera Nevada caldera presents a reduced compositional range (52–63% SiO2) and geochemical features of low-pressure magma mixing and assimilation. Instead, Cordón Caulle and Puyehue volcanoes have a wide silica range (48–71% SiO2) and an outstanding affinity, which can be modelled with initial high-pressure fractional crystallization, moderate magma mixing and subsequent low-pressure fractional crystallization from a common parental source.The exceptional magmatic evolution and eruptive style of PCCVC in Southern Andes could be related with the physics of the plumbing system, which in turn can be controlled by external factors as the structure of the continental crust and the ongoing stress regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号