首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A consistent pattern has been observed in the results obtained for Au in three soil and two porphyry copper ore samples serving as control reference standards in geochemical analyses. The mean reported by wet chemical methods (regardless of the measurement technique) was less than the mean by fire assay-based methods which, in turn, was less than the mean reported by laboratories using direct instrumental neutron activation analysis (INAA). These data have been obtained from 16 laboratories, some employing more than one method. Compared to INAA, values obtained for Au (at the 30–300 ppb level) using aqua regia (AR) dissolution were low by 24–42%, while those reported by fire assay-based methods were low by 14–26%.Studies of these samples and 32 rocks of widely varying composition revealed that the amount of Au remaining in the residue after AR attack ranged from 4% to 59% of the total. Gold dissolved by AR was determined by graphite furnace atomic absorption spectrometry (GFAAS) after extraction into MIBK (methyl isobutyl ketone), whereas Au remaining in the residue was determined by INAA. The slope of the line obtained by plotting Au by INAA vs. the sum of Au by AR/GFAAS and Au in the residue was not significantly different from 1.0.Modifications to the AR procedure such as prior attack by HCl or HF did not improve the recovery of Au in the three reference soils. However, reduction of sample size from 10 g to 1 g while maintaining the volume of AR at about 30 ml did increase results for Au. Furthermore, addition of HF in the attack on 1-g samples yielded results virtually identical to those obtained by INAA. It is thought that the poor extraction efficiency by AR is due to non-wetting of the larger sized sample, a lack of intimate, prolonged contact between the grains of the sample and the acid mixture and the presence of insoluble gangue surrounding Au particles. Constant agitation of the sample during evaporation with AR is desirable.The mean values obtained for Au in the soils by fire assay methods were not significantly different from the results by INAA (low by 14–19%); this was not the case for the two copper ore samples (low by 26%). This probably reflects the difficulties encountered in fire assay by high concentrations of Cu which hinder effective collection and separation of Au into the Pb button. However, the accuracy of the INAA method has not been established and is dependent upon measurement procedures and the degree of certainty associated with the Au values assumed for the reference materials employed for calibration. While estimation of precision does not present a problem, accuracy is difficult to assess in the absence of certified reference materials for Au at concentrations in the 10–300 ppb range. However, it is concluded that methods based upon AR dissolution can lead to low results, the magnitude being dependent upon the sample matrix and the mineralogical association of the Au present.  相似文献   

2.
Heap leaching is essentially a process in which metals are extracted from mine ores with lixiant. For a better understanding and modeling of this process, solute transport parameters are required to characterize the solute transport system of the leach heap. For porous media like leach ores, which contain substantial gravelly particles and have a broad range of particle size distributions, traditional small-scale laboratory experimental apparatus is not appropriate. In this paper, a 2.44 m long, 0.3 m inner diameter column was used for tracer test with boron as the tracer. Tracer tests were conducted for 2 bulk densities (1.92 and 1.62 g/cm3) and 2 irrigation rates (2 and 5 L/ (m2·h−1)). Inverse modeling with two-region transport model using computer code CXTFIT was conducted based on the measured breakthrough curves to estimate the transport parameters. Fitting was focused on three parameters: dispersion coefficient D, partition coefficient β, and mass transfer coefficient ω. The results turned out to fall within reasonable ranges. Sensitivity analysis was conducted for the three parameters and showed that the order of sensitivity is β > ω > D. In addition, scaling of these parameters was discussed and applied to a real scale heap leach to predict the tracer breakthrough.  相似文献   

3.
An orientation survey was conducted over the Quartz Mountain, Oregon, hot-spring type disseminated gold deposit to address three questions critical to successful exploration of the area: What is the relationship between bedrock geology and the trace-element content of trees and soils; do these relationships change seasonally; are these relationships similar in the two tree species which discontinuously blanket the area?Twig, needle and wood samples were collected four times during the year from both ponderosa pine (Pinus ponderosa) and white fir (Abies concolor). Soils were collected once. All samples were analyzed for Au and As and the wood samples were analyzed also for Sb.Arsenic was the best pathfinder element, having little analytical, spatial, or seasonal variation in the twig and needle samples. Anomalous levels were 150 μg/g (ppm) As in pine and 30 μg/g in fir. Gold showed analytical variation of 20–30%, sample duplicate variation up to 90%, spatial changes, and seasonal variation ranging from winter-summer background [10–20 ng/g (ppb) Au] to anomalies of 300–400 ng/g (ppb) Au in pine and 100 μg/g (ppb) Au in fir in the spring and fall. Antimony could not be completely evaluated as a pathfinder element because it was only determined in wood samples.Needles and twigs from both species proved to be viable sample media for exploration of the area. Wood was not a suitable medium because of low, erratic values, perhaps due in part to analytical technique. Needles had 2 to 20 times higher As concentrations than did twigs. Twigs had a slightly higher Au content [25 ng/g (ppb)] than did needles. The pine samples were higher in both elements than were the fir samples. The data, normalized by species, could be treated as one homogeneous data base.The soil Au and As data outlined the mineralization clearly with a central Au anomaly [100 ng/g (ppb) and greater] surrounded by As anomalies [100 μg/g (ppm) and greater] over a distance of 594 m. Neither spring nor fall tree Au anomalies were coincident with the soil Au anomaly. Consistent throughout the year, tree As anomalies coincided with the soil As anomalies, but covered a smaller area. Both the Au and As anomalies in trees appeared to be related to bedrock contact zones rather than to the soil the trees were growing in.  相似文献   

4.
An elegantly simple, aqua regia-based, ICP-MS analytical procedure is used to compare the trace element composition of density-separated alluvial native Au from seven stream silt samples with three samples of geographically-associated Au from a prospective ore deposit in central British Columbia. Not all of the alluvial Au could have come from the ore deposit based on present drainage. The silt sample Au, averaging four alluvial grains and totaling 12–250 μg per sample, generally yielded measurable concentrations for V, Fe, Cu, As, Pd, Ag, Sb, Pt and Bi. The bedrock Au samples represent the three dominant rock types in the showing. Their Au trace element compositions largely bracket the alluvial Au. Multidimensional scaling (exploratory statistics) shows that trace elements in the native Au form lithophile, chalcophile and siderophile groupings. This indicates that a small set of geochemical processes formed all the Au in one geologic environment. Previous work shows that Au from individual deposits has distinct assemblages of detectable elements. Given these observations and that detectable elements are the same in both the deposit and alluvial Au, and that concentrations in the former bracket those of the latter, it is concluded that the source of the alluvial Au has probably been identified. Apparently neither mineral inclusions nor weathering impaired fingerprinting of the Au. The simplicity of the approach indicates that this is a useful exploration tool for determining the bedrock source of alluvial Au. The study also shows that silt sample exploration in glaciated terrains must recognize that paleo-ice movement and paleo-stream directions can yield geographic distributions of alluvial Au that cannot be explained by present-day drainage patterns. Thus this simple analytical/exploration technique is potentially very useful to the exploration industry.  相似文献   

5.
利用细菌对难处理金矿进行浸出处理,具有成本低廉、环境污染小、处理效率高等突出优点,已成为非常有前途的难处理金矿的预处理方法。笔者以河北遵化滑石峪金矿(含金黄铁矿)样品为例,在几种氧化亚铁硫杆菌中发现D3菌种处理此类难浸金矿有显著的增大提金率的效果。在200目粒度条件下,氰化提金率从单纯氰化的63.9%提高到细菌预处理后再氰化的88.2%,而且对100目以下的大粒度金矿,提金率也普遍提高10%以上;此外,还进行了该菌种处理金矿过程的条件实验,如粒度影响、pH值变化和物理方法强化的研究,得出了金矿在细菌氧化过程中的一些规律和在实际操作时的最优化控制条件。  相似文献   

6.
蔡淑霞  张云 《地质与资源》1992,1(4):235-242
本文介绍了堆浸提金原理和在实验室进行金矿石堆浸可行性研究的方法.以我国辽宁猫岭金矿、四川茶铺子金矿和福建紫金山金矿为研究对象,研究了矿石粒度、氰化钠溶液浓度、浸出时间等因素对金浸出率的影响,从而确定堆浸提金最佳工艺条件.通过对上述三类矿石性质及堆浸性能的比较,认为矿石的物质组成和金的嵌布特性对金的浸出率影响较大.  相似文献   

7.
The results described relate to an investigation into the nature of Au dispersion in glacial till, undertaken to identify optimum search techniques for use in exploration for Au mineralization.The diversity of Au mineralization, in terms of the host rock lithologies, mineralogy and grain size of the Au, would be expected to give rise to differences in the secondary response in the associated overburden. Common exploration procedures involve the analyses of the heavy-mineral fraction or a particular size fraction of the tills. However, having regard to the expected variable response of Au in associated glacial till, attributed to variations in primary mineralization, effective exploration requires that the methodology employed is capable of locating all types of Au mineralization.Bulk till samples were collected from various sites associated with the Owl Creek deposit near Timmins and the Hemlo deposits. Grain size analyses were carried out on the till samples and on the heavy-mineral concentrates. The concentration of the Au in the various fractions was determined by Instrumental Neutron Activation Analysis.Preliminary results allow a number of provisional conclusions to be drawn:
1. (1) Grain size analysis of the −2 mm fraction of tills indicates that the silt and clay fraction constitutes 20–50%, whereas, in contrast, the equivalent heavy-mineral concentrates are dominantly composed of the coarser −500 + 63 μm material.
2. (2) The amount of Au present in the heavy-mineral concentrates of tills represents only a minor proportion of the total Au in the original till samples. In addition, the proportion of the total Au recovered in the heavy-mineral concentrate varies from 4 to 15%. Both factors indicate that caution is necessary in interpreting the significance of heavy-mineral Au data.
3. (3) Examination of the size distribution of Au within the heavy-mineral concentrate indicates that the majority of the Au is contained in the −125 μm fraction.
4. (4) The concentration factor (the original sample weight divided by the heavy-mineral concentrate weight) varies up to 7-fold between samples due presumably to the differing proportions of heavy minerals. Hence, in Au deposits of equivalent economic significance this gives rise to varying Au concentrations in heavy-mineral concentrates according to the quantity of heavy minerals present. Significant interpretation can only be achieved by re-expressing the Au contents of heavy-mineral concentrates in terms of the absolute amount of Au in heavy-mineral concentrates.
5. (5) A comparison of the heavy-mineral concentrates produced by different laboratories indicates marked differences in the weight of the heavy-mineral concentrate, the Au concentration of the heavy-mineral concentrate, the total weight of Au in the heavy-mineral concentrate and the size distribution of the Au in the heavy-mineral concentrate.
6. (6) Analysis of the −63 μm silt and clay size fraction indicates anomalous Au contents within this fraction of the tills collected from Owl Creek and Hemlo, extending over 500 m down-ice from mineralization at Hemlo.
7. (7) Analysis of the −63 μm silt and clay size fraction is suitable for the detection of fine-grained Au deposits that are not amenable to detection on the basis of heavy-mineral concentrate analyses.
8. (8) The analysis of the silt and clay fraction reduces the sample representativity problems associated with analyzing coarser fractions.
9. (9) A comparison of the Au distribution in heavy-mineral concentrates and the −63 μm fraction of till down-ice from the Owl Creek deposit indicates broadly similar dispersion patterns.
In conclusion, although the results are based on relatively few samples, their consistency permits some general conclusions to be drawn. The silt and the heavy-mineral concentrate analyses provide different information and in view of the diversity of exploration targets and surface environments exploration reliability can be increased by analyzing both the −63 μm silt and clay fraction and the heavy-mineral concentrate.  相似文献   

8.
槐树坪金矿床位于河南省洛阳市嵩县境内,是豫西熊耳山地区近年来新发现的大型金矿床。本次研究对槐树坪金矿区地表及井下不同类型的较新鲜围岩、蚀变岩和矿石以及地表1∶20000面积性土壤采样,分析29项微量元素,从岩石和土壤两种采样介质来确定槐树坪金矿床的地球化学找矿指示元素。一方面基于较新鲜围岩的元素含量特征确定每个微量元素在该区岩石中的异常下限,进而分别计算了蚀变岩和矿石中微量元素平均含量与异常下限的比值,即异常衬度。按照异常衬度大于1.4的标尺确定了蚀变岩与矿石中明显富集的微量元素组合。另一方面,基于Au与28项微量元素在较新鲜围岩、蚀变岩、矿石三种介质中含量关系散点图直观确定了指示金成矿的微量元素组合。综合二者确定出槐树坪金矿区岩石地球化学找矿的指示元素组合为Au、Ag、As、Sb、Hg、Sn、Mo、Bi、Cu、Pb、Zn、Cd、Nb计13项。针对地表1∶20000面积性土壤调查,采用上述岩石中异常衬度为1.4作为土壤异常下限绘制了槐树坪金矿区微量元素的地球化学异常剖析图,以槐树坪金矿区已探明鸡公山一带的主成矿段为模型确定了土壤地球化学找矿的指示元素组合为Au、Ag、As、Sb、Hg、Bi、Cu、Pb、Zn、Cd、B计11项。综合上述结果认为在找矿指示元素组合方面土壤对岩石具有明显的继承性。基于岩石与土壤介质中共同的10项找矿指示元素,构建了归一化的综合异常指标,以鸡公山矿段为标准对整个槐树坪矿区进行了综合评价,发现槐树坪矿区内马蹄沟、秦佛爷沟、姜疙瘩和天坪西4处具有类似鸡公山矿段的找矿潜力。  相似文献   

9.
Metamorphic remobilization of arsenopyrite-rich ores is a globally important process which can lead to significant concentrations of gold. In order to understand this and related processes, relations of sulphur isotopes can give a number of important clues. To resolve such relations in detail, we have successfully calibrated and applied a laser combustion system for in situ analysis of sulphur isotopic compositions of arsenopyrite. Experimental calibration of the laser fractionation factor (+0.4‰) was obtained by using compositionally and isotopically homogeneous natural samples from ore deposits at Boliden (Sweden) and Freiberg (Germany); subsequent to detailed microscopic study, the S isotope ratios of these samples were measured by conventional and laser combustion techniques.The present application to different types of arsenopyrite in the Palaeoproterozoic metamorphosed VHMS ores of the Boliden Au–Cu–As deposit, Skellefte district, northern Sweden, shows that the sulphur isotope composition of arsenopyrite is essentially unmodified during medium-grade metamorphic recrystallization and remobilization. Here, massive arsenopyrite ore is crosscut by later veins that carry a complex quartz–sulphosalt–sulphide assemblage. The latter ore type is markedly Au-rich compared to the host ore, and thus of significant economic interest. We find that both ore types exhibit very similar sulphur isotope compositions, ca. +2‰ to +3‰ (V-CDT), which is similar to most massive sulphide deposits in the Skellefte district. Thus, the crosscutting Au-rich vein ore has inherited the sulphur isotope composition from sulphur liberated by metamorphic reactions affecting the massive ore, and most likely also inherited the Au through this mechanism. The latter finding clearly has important implications both for the general discussion on, and the prospecting for, similar high-grade Au ores in this world-class mining region.  相似文献   

10.
Carlin-type gold deposits are best known for the scarcity of visible gold in their ores. It has long been recognized that the majority of gold is “invisible”, such that it cannot be resolved by conventional microscopy, and resides in arsenian pyrite. Shuiyindong differs in that sub-μm to μm-sized native gold is present in arsenian pyrite veinlets and disseminations. It is also the largest (55 tonnes) and highest grade (7 to 18 ppm), stratabound, Carlin-type gold deposit in Guizhou, China and has produced 5 tonnes of gold from sulfide refractory ores extracted by underground mining methods. In this study, an electron microprobe analyzer (EMPA) was used to map the spatial distribution of “invisible” gold and sub-μm to μm-size visible gold particles in arsenian pyrite in high-grade ore samples from the Shuiyindong. The samples studied are hosted in Permian bioclastic ferroan limestone of the Longtan Formation and exhibit evidence of decarbonation, silicification and sulfidation. Arsenian pyrite with detectable Au (> 400 to 3800 ppm) is disseminated in altered limestone and was deposited in two stages separated by an episode of corrosion in a veinlet.The results show that there are two populations of native gold in arsenian pyrite. One is comprised of sub-μm size gold particles (0.1 to 0.2 μm) that are occasionally present in the gold-bearing arsenian pyrite disseminated in the host rocks. This arsenian pyrite is interpreted to have been formed by sulfidation of ferroan calcite and dolomite. Another is comprised of coarser (1 to 6 μm) native gold grains present in the arsenian pyrite veinlet, either on the first stage where it has been corroded or on the second stage. The lack of fluid inclusion or other evidence of boiling and the low iron content of fluid inclusions in quartz, suggest the veinlet formed by sulfidation of another fluid containing Fe. The Fe-bearing fluid may be a depleted ore fluid that gained Fe by dissolution of ferroan limestone after H2S had been consumed. The association of the largest visible gold grains with an episode of corrosion suggests that fluids episodically became undersaturated with arsenian pyrite while remaining saturated with gold (e.g., pH decrease or an increase in the oxidation state). This may have resulted from incursion of relatively acidic or oxidized fluids that were able to dissolve arsenian pyrite and remain saturated with gold. In this case, sulfidation of iron from the host rock, was the most important depositional mechanism for Au-bearing arsenian pyrite with, or without, grains of native gold.  相似文献   

11.
黔东南金成矿区位于江南造山带金成矿省的西南端,成矿条件优越。坑头金矿床是黔东南金成矿区的一个中型矿床,在其深部找矿中,发现除石英脉型矿体外,还存在蚀变岩型矿体。然而,这种蚀变岩型矿体的构造形态、蚀变类型、与石英脉型矿体之间关系和金的赋存状态尚不清楚。本研究与当前的勘查工作紧密结合,围绕石英脉型矿体和新发现的蚀变岩型矿体为研究切入点,借助微区分析技术(扫描电镜和电子探针)进行系统的“流体-蚀变-成矿”研究。蚀变矿物金红石矿物化学显示为热液成因,具有典型造山型金矿床的金红石标型特征。围岩的沉积-成岩过程(包括低级变质作用过程),主要形成了草莓状黄铁矿和含铁碳酸盐岩,为后期含金硫化物(黄铁矿和毒砂)的形成提供物质基础(如Fe)。金的成矿富集过程主要经历了绢云母+毒砂+黄铁矿+石英(Ser+Apy+Py+Qtz)阶段、黄铁矿+毒砂+石英(Py+Apy+Qtz)阶段和自然金+石英(Au0+Qtz)阶段。在Ser+Apy+Py+Qtz阶段,主要表现为含矿流体与围岩的初级交代,形成大量浸染状黄铁矿+毒砂的硫化带;Py+Apy+Qtz阶段主要为流体沿着剪切带再交代,形成蚀变岩型矿...  相似文献   

12.
Geochemical exploration by stream sediment sampling using bulk leach extractable gold (BLEG) technique and applying concentration-number (C-N) fractal model, factor analysis (FA), and geochemical mineralization probability index (GMPI) resulted in the recognition of new Au occurrences around the Sukari gold mine in the central Eastern Desert of Egypt. The geochemical data of 128 stream sediment samples collected from the study area was used for delineating the geochemical anomalies and characterizing the dispersion trains of ore and associated elements (Au, Ag, As, Sb, Cu, Pb, Zn, Mo). Statistical analysis of the geochemical data applying the C-N fractal modeling enabled us to identify significant anomaly and background populations of the investigated elements and to construct reliable geochemical anomaly maps. Factor analysis using centered log-ratios (CLR), to address the problem of closed compositional data, revealed significant element associations for mineralization (Au, As, Mo, Zn, Ba), country rock compositions (Rb, Li, Be, Sn, Bi for granite, and Co, Cr, Ni for mafic rocks), and element mobility (e.g. Sb, Zr, and Ag). Weak and moderate Au anomalies that cannot be detected by factor score maps can be delineated clearly by using the C-N fractal method and GMPI distribution map. Our study revealed that Ag, As, and Sb are the main pathfinder elements for gold mineralization in arid to semiarid regions exemplified by the Sukari gold district. Silver can be used as a “direct” pathfinder, whereas As and Sb are “indirect” pathfinders for Au in such regions. The spatial distribution of Au and Ag anomalies indicate that gold mineralization in the Sukari district is structurally controlled. However, the spatial distribution of Cu, Pb, Zn, and Mo is controlled by mineralogical and lithological factors and is not related to any significant base metal deposits.  相似文献   

13.
The concentrations of Ru, Pd, Ir, Pt, and Au were determined in a ferromanganese nodule reference sample NOD-A-1 by inductively coupled plasma mass-spectrometry. Sample preparation procedures include acid digestion and anion exchange preconcentration. Standard addition method was used to eliminate losses of the analyte during the chromatographic separation. The results are in agreement with previously published data. The low level of intermediate precision for Au between different subsamples of the same sample probably originates from the heterogeneous distribution of Au in ferromanganese nodules. The accumulation of PGE in ferromanganese nodules was studied using international reference samples.  相似文献   

14.
In 1982 a reconnaissance geochemical till-sampling survey covering a 37,780-km2 area was performed by Terra Swede AB and Jämtlands Mineral AB in the county of Jämtland in upper central Sweden, using a sampling density of 1 sample per 39.1 km2. The western part of the study area is underlain by rocks of the Caledonides (predominated by Cambrian-Silurian sediments) whereas in the central and eastern parts Precambrian granite, gneiss, pegmatite, diabase and metagraywacke predominate. The area is covered by a relatively continuous cover of till. At least three different ice directions are indicated by glacial striae. Till is covered by glaciofluvial material locally, and where the latter was recognized samples were not collected. Till samples are taken from the C-horizon of podsolic soils at a depth of 0.5–1.0 m. Samples weighing 0.59 g were analyzed by neutron activation analysis after sieving to minus 0.5 mm (35 mesh).  相似文献   

15.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

16.
Summary Samples of drill core, ore and concentrates from the Proterozoic Suurikuusikko Au deposit, Kittilä, Central Lapland were studied by optical microscopy, image analysis, Secondary Ion Mass Spectrometer (SIMS), trace gold analysis by electron microprobe, and diagnostic leaching techniques to characterize the mode of occurrence of the gold. The main ore minerals are pyrite, arsenopyrite and gersdorffite, and the minor ore minerals include chalcopyrite, sphalerite, tetrahedrite, galena, bournonite and rutile. Graphite is found in all samples as microcrystalline grains. Pyrite, arsenopyrite and occasionally gersdorffite occur as disseminated intimately intergrown grains and as large grain aggregates. Diagnostic leaching tests show that an average of only 4.1% of the gold is in cyanide leachable form i.e. free gold, whereas on average 57% of the gold is bound to pyrite and arsenopyrite as inclusions or as lattice gold. The weight percentage of arsenopyrite and pyrite in the concentrate determined with image analysis on backscattered electron images is 65.2 and 34.7, respectively. Trace Au analyses done with EPMA using the Australian CSIRO-TRACE program from the drill core samples and concentrates show that the average gold content in pyrite is 46 ppm (192 analyses) and in arsenopyrite 279 ppm (136 analyses). The CSIRO-TRACE microprobe analyses correspond favourably to SIMS analyses, e.g. 69 ppm for pyrite (16 analyses) and 217 ppm for arsenopyrite (22 analyses). The distribution of gold in concentrates was calculated as free gold 4.1%, gold in pyrite 22.7%, and gold in arsenopyrite 73.2%. Both arsenopyrite and pyrite show strong zoning when treated for 1–2 min with KMnO4 dissolved in sulphuric acid, and trace Au microprobe analyses show that the zonal bands reflect different concentrations of gold in the minerals. Free gold was not found by optical microscopy, but a rare mineral search technique using TURBO-SCAN runs on the drill core samples and concentrates located 111 gold grains. The grains have a large compositional variation from silver-bearing gold to electrum and Au-Ag-amalgam.
Bestimmung der refraktären Goldverteilung durch Mikroanalyse, diagnostisches Leaching und Bildanalyse
Zusammenfassung Proben von Bohrkernen, Erzen und Konzentraten aus der proterozoischen Goldlagerstätte Suurikuusikko, Kittilä, Zentrallappland, wurden mittels optischer Mikroskopie, Bildanalyse, Sakundär ionen messenspektrographie (SIMS), Gold-Spurenanalyse mit der Elektronen-Mikrosonde (EMS) und mit diagnostischen Lösungsverfahren untersucht, um die Art des Auftretens des Goldes zu charakterisieren. Die Haupterzminerale sind Pyrit, Arsenopyrit und Gersdorffit. Nebengemengteile sind Chalcopyrit, Zinkblende, Tetrahedrit, Bleiglanz, Bournonit sowie Rutil. Graphit kommt in allen Proben in Form mikrokristalliner Körner vor. Pyrit, Arsenkies und gelegentlich auch Gersdorffit treten als Imprägnation in engster Verwachsung und in Form größerer Kornaggregate auf. Diagnostische Lösungsversuche haben gezeigt, daß durchschnittlich nur 4.1% des Goldes von Cyanid gelöst wird, i.e. als Freigold vorliegt, während 57% des Goldes an Einschlüsse und in dem Gitter von Pyrit und Arsenkies gebunden ist. Mittels Bildanalyse an BSE- Bildern konnte der Anteil von Arsenkies in den Konzentraten mit 65.2, der Anteil von Pyrit mit 34.7 Gew.% ermittelt werden. Spurenanalyse auf Gold an Bohrkernproben und Konzentraten mit der EMS, unter Benützung des australischen CSIRO-TRACE Programmes, zeigen, daß der durchschnittliche Goldgehalt von Pyrit bei 46 ppm (192 Analysen), jener von Arsenkies bei 279 (136 Analysen) liegt. Die CSIRO-TRAGE Mikrosondenanalysen stimmen bevorzugt mit SIMS Analysen überein; z.B. Pyrit: 69 ppm (16 Analysen), Arsenkies: 217 ppm (22 Analysen). Die Berechnung der Goldverteilung in den Konzentraten ergibt 4.1% freies Gold, 22.7% Gold in Pyrit, und 73.2% Gold in Arsenkies. Sowohl Arsenkies als auch Pyrit zeigen starken Zonarbau, nachdem sie für 1–2 min mit in Schwefelsäure gelöstem KMnO4 behandelt wurden. Die Mikrosondenanalysen auf Gold belegen, daß die einzelnen Wachstumszonen mit unterschiedlichen Goldkonzentrationen korrelieren. Freies Gold konnte nicht mittels normaler optischer Mikroskopie gefunden werden, aber mit dem Programm TURBO-SCAN für das automatische Suchen nach seltenen Mineralen an Bohrkernproben und Konzentraten konnte man 111 Goldkörner lokalisieren. Die Körner zeigen eine große Variation in ihrer Zusammensetzung, die von silberführendem Gold über Elektrum bis hin zu Au-Ag-Amalgamreicht.
  相似文献   

17.
The Xiangxi Au–Sb–W deposit, the largest of its type in northwestern Hunan, China, is a sulfide-dominated ore body hosted by low grade metamorphic red slates of the Neoproterozoic Madiyi Formation. Three stages of mineralization, quartz–scheelite, quartz–gold–pyrite, quartz–gold–stibnite, and one metal-barren stage of veining, quartz–calcite, are recognized. Arsenopyrite occurs only as a minor mineral phase in the second stage. Analyses for 21 trace elements show that the enrichment factors of As in the metal deposit (EC [=element concentration of sample/average content of an element in the upper crust]: 190; 43 samples) in ore veins and in the Guanzhuang and Yuershan reference sections (3.7 km and 2.7 km away from the Xiangxi mine, EC: 3.5; 96 samples) are much smaller than those of Sb (52855 [in ore veins], 117 [in the sections]), W (5665, 7.5) and Au (2727, 5.3). The background concentrations of Au and As in the two sections were 1.4 ppb and 1.4 ppm, respectively. Arsenic (with an anomaly coefficient [AC = number of anomalous samples/total number of samples] of 76%) forms a larger geochemical halo than W (AC: 8%) and Au (AC: 32%). Gold and As in the deposit were transported mainly as metal complexes such as Au(HS)2, HnAs3S−(3−n)6 (n=1, 2 or 3) and HAsS02. Au(HS)2 is rapidly precipitated by a geochemical oxidation barrier — the red slates of the Madiyi Formation. As–S complexes in the stratigraphic horizon can be transformed into As–O complexes (e.g., H3AsO03) under oxidizing conditions, and are continuously transported. Therefore, they can be widely distributed in the red slate units, thus forming extensive geochemical haloes, so that As can be used as an indicator element for Au exploration in the Xiangxi region.  相似文献   

18.
The Hämeenkyrö batholith is a round-shaped plutonic body of an areal size of 147 km2. It is composed of calc-alkaline to alkaline rocks that intruded previously metamorphosed Svecofennian volcanogenic and sedimentary schists 1860 Ma ago. The Cu-W bearing tourmaline breccia of the Ylörvi deposit occurs in metavolcanic rocks close to the eastern contact of the batholith.The average sampling density in the batholith was 1 sample per km2, and 175 samples were analyzed for Cu, Au, Ag, Ni, Pb, Co, Zn, S by AAS for SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, K2O, As, Sn and P by X-ray fluorescence. Mo and W were determined colorimetrically. Barth mesonorms were calculated for each sample and the rock type was determined according to Streckeisen's classification. Element distributions are displayed on contour maps.The rock types of the batholith exhibit an asymmetric concentric arrangement, the order from the center towards the margin being alkali-feldspar granite, syenogranite, monzogranite, quartz monzonite, quartz syenite, alkali-feldspar, quartz syenite, syenite and alkali-feldspar syenite. Anomalously high Cu, As, Sn, S, K2O and Na2O contents have been found at the eastern margin of the batholith in a N—S-trending zone, which is characterized by hydrothermal alteration phenomena, propylitization, tourmalinization and scapolitization. Three anomalous areas have been defined within this zone, one of them is associated with the Ylöjärvi deposit and the other two are regarded as exploration targets.  相似文献   

19.
A large number of fluid inclusions are observed in quartz contained in Au ores. A study of the geochemistry of inclusions from the Linglong Au deposit in Shandong Province shows that ore-forming temperature and pressure, frequency of appearance for critical inclusion, and saline halo of the main Au-bearing veins 108 and 51 increase in the direction of Linglong Fault. We concluded accordingly, that: (1) the Linglong Fault was a conduit structure for mineralization and will form a favourable place for prospecting where the fault intersects a host structure trending east-northeast; (2) distinct differences in geochemical characteristics are present in relation to the fluid inclusions contained in Au-bearing quartz veins and barren quartz veins, with the former having higher homogenization temperatures, appearing frequency for critical inclusion, content of CO2, H2 and CH4, and molar concentration ratio of (H2 + CH4) to CO2, than those of the latter; (3) decrepitation curves for the two sorts of quartz veins have obviously different characteristics; and (4) geochemical characteristics of fluid inclusions present in the quartz of quartz-vein-type Au ore deposits demonstrate that its metallogenetic pressure, salinity, and decrepitation temperature all increased progressively towards the deeper part of the quartz vein, approximating those of altered-rock-type Au ore deposits. We already know of some Au mines where quartz-vein-type Au ore deposits are turned at depth into altered-rock-type Au ore deposits. Therefore, attention should be paid to prospecting for altered-rock-type Au ore deposits below the quartz-vein-type. From this study, we believe that the geochemical study of fluid inclusions in minerals is a new and useful exploration approach, which should be further explored and used.  相似文献   

20.
322矿田铀矿床原地破碎浸出地质技术评估   总被引:1,自引:1,他引:1  
李德平  顾连兴  周青生  李顺初 《铀矿地质》2001,17(4):231-238,244
本文从原地破碎浸出法采矿要求出发,对322铀矿田碎裂蚀变花岗岩型铀矿床(点)的地质构造、岩/矿石物质成分、矿石结构、铀的赋存形式、岩/矿石物理力学参数、矿体形态、产状、规模及矿床水文地质条件进行了研究;通过原地爆破筑堆试验及一系列铀矿的柱浸工艺试验,获得了大量原地破碎浸出参数;运用原地破碎浸出法适用性评价模型对其进行了评价,认为该矿田碎裂蚀变花岗岩型铀矿床适宜采用原地破碎浸出法开采。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号