首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

2.
The origin and transport of water in the early Solar System is an important topic in both astrophysics and planetary science, with applications to protosolar disk evolution, planetary formation, and astrobiology. Of particular interest for understanding primordial water transport are the unequilibrated ordinary chondrites (UOCs), which have been affected by very limited alteration since their formation. Using X-ray diffraction and isotope ratio mass spectrometry, we determined the bulk mineralogy, H2O content, and D/H ratios of 21 UOCs spanning from petrologic subtypes 3.00–3.9. The studied UOC falls of the lowest subtypes contain approximately 1 wt% H2O, and water abundance globally decreases with increasing thermal metamorphism. In addition, UOC falls of the lowest subtypes have elevated D/H ratios as high as those determined for some outer Solar System comets. This does not easily fit with existing models of water in the protoplanetary disk, which suggest D/H ratios were low in the warm inner Solar System and increased radially. These new analyses confirm that OC parent bodies accreted a D-rich component, possibly originating from either the outer protosolar nebula or from injection of molecular cloud streamers. The sharp decrease of D/H ratios with increasing metamorphism suggests that the phase(s) hosting this D-rich component is readily destroyed through thermal alteration.  相似文献   

3.
Textural and qualitative EDX investigations of dark-rimmed particles in six low petrologic type chondrites indicate that the rims accreted on host particles over a wide range of temperatures prior to initial accumulation and lithification of the meteorites in which the rimmed particles are now contained. Many dark rims are enriched in moderately volatile trace elements such as Na, Cl, P, and K, relative to the host particles and matrix. The range of physical/chemical environments associated with hypervelocity impacts may have offered the setting for the formation of dark-rimmed particles early in solar system history.  相似文献   

4.
Abstract– We have examined Fe/Mn systematics of 34 type IIA chondrules in eight highly unequilibrated CO, CR, and ordinary chondrites using new data from this study and prior studies from our laboratory. Olivine grains from type IIA chondrules in CO chondrites and unequilibrated ordinary chondrites (UOC) have significantly different Fe/Mn ratios, with mean molar Fe/Mn = 99 and 44, respectively. Olivine analyses from both these chondrite groups show well‐defined trends in Mn versus Fe (afu) and molar Fe/Mn versus Fe/Mg diagrams. In general, type IIA chondrules in CR chondrites have properties intermediate between those in UOC and CO chondrites. In most UOC and CR type IIA chondrules, the Fe/Mn ratio of olivine decreases during crystallization, whereas in CO chondrites the Fe/Mn ratio does not appear to change. It is difficult to interpret the observed Fe/Mn trends in terms of differing moderately volatile element depletions inherited from precursor materials. Instead, we suggest that significant differences in the abundances of silicates and sulfides ± metals in the precursor material, as well as open‐system behavior during chondrule formation, were responsible for establishing the different Fe/Mn trends. Using Fe‐Mn‐Mg systematics, we are able to identify relict grains in type IIA chondrules, which could be derived from previous generations of chondrules, including chondrules from other chondrite groups, and possibly chondritic reservoirs that have not been sampled previously.  相似文献   

5.
Abstract— Keil and Wilson (1993) proposed that, during partial melting of some asteroidal meteorite parent bodies, explosive pyroclastic volcanism accelerated S-rich Fe, Ni-FeS cotectic partial melts into space. These authors argued that this process was responsible for the S-depletion of many of the magmas from which the magmatic iron meteorites formed. This process only requires the presence of a few hundred to thousand ppm of volatiles in asteroids < ~100 km in radius. If the precursor materials of these magmatic iron meteorite groups were similar in composition to unequilibrated ordinary chondrites, then the volatile contents of the latter may be a measure of the potential effectiveness of the process. Analysis of volatile contents of seven unequilibrated ordinary chondrite falls by dynamic high-temperature mass spectrometry revealed that thousands of ppm of indigeneous volatiles, mostly CO, Cl, Na and S, are released at temperatures near the Fe, Ni-FeS cotectic melting temperature of ~980 °C. If these volatiles are largely retained in the asteroidal parent bodies until onset of partial melting, S depletion of the residual melt might have been achieved by ejection of S-rich partial Fe, Ni-FeS melts by pyroclastic volcanism.  相似文献   

6.
Abstract— We measured with a secondary ion mass spectrometer Mn/Cr ratios and Cr isotopes in individual grains of Mn-bearing sulfides (i.e., sphalerites, ZnS; alabandites, MnS; and niningerites, MgS) in nine unequilibrated enstatite chondrites (UECs). The goals were to determine whether live 53Mn (half-life ~3.7 Ma) was incorporated in these objects at the time of their isotopic closure and to establish whether Mn-Cr systematics in sulfides in UECs can be used as a high-resolution chronometer to constrain formation time differences between these meteorites. Sulfide grains analysed in four of these UECs, MAC 88136 (EL3), MAC 88184 (EL3), MAC 88180 (EL3), and Indarch (EH4), have clear 53Cr excesses. These 53Cr excesses can be very large (δ53Cr/52Cr ranges up to ~18,400%, the largest 53Cr excess measured so far) and, in some grains, are well correlated with the Mn/Cr ratios. Thus, they were most likely produced by the in situ decay of 53Mn in the meteorite samples. In the remaining five meteorites, no detectable excesses of 53Cr were found, and only upper limits on the initial 53Mn/55Mn ratios could be established. The four meteorites with 53Cr excesses show variations in the inferred 53Mn/55Mn ratios in various sulfide grains of the same meteorite. The Mn-Cr systematics in these sulfides were disturbed (during and/or after the decay of 53Mn) by varying degrees of reequilibration. Provided 53Mn was homogeneously distributed in the region of the early solar system where these objects formed, the data suggest that the time of the last isotopic equilibration of sulfides in EL chondrites occurred at least 3 Ma after a similar episode in EH chondrites.  相似文献   

7.
Abstract— In order to investigate the distribution of 26A1 in chondrites, we measured aluminum‐magnesium systematics in four calcium‐aluminum‐rich inclusions (CAIs) and eleven aluminum‐rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic 26Mg (26Mg*) from the decay of 26A1. The inferred initial 26Al/27Al ratios for these objects ((26Al/27Al)0 ? 5 × 10?5) are indistinguishable from the (26Al/27Al)0 ratios found in most CAIs from carbonaceous chondrites. These observations, together with the similarities in mineralogy and oxygen isotopic compositions of the two sets of CAIs, imply that CAIs in UOCs and carbonaceous chondrites formed by similar processes from similar (or the same) isotopic reservoirs, or perhaps in a single location in the solar system. We also found 26Mg* in two of eleven aluminum‐rich chondrules. The (26Al/27Al)0 ratio inferred for both of these chondrules is ~1 × 10?5, clearly distinct from most CAIs but consistent with the values found in chondrules from type 3.0–3.1 UOCs and for aluminum‐rich chondrules from lightly metamorphosed carbonaceous chondrites (~0.5 × 10?5 to ~2 × 10?5). The consistency of the (26Al/27Al)0 ratios for CAIs and chondrules in primitive chondrites, independent of meteorite class, implies broad‐scale nebular homogeneity with respect to 26Al and indicates that the differences in initial ratios can be interpreted in terms of formation time. A timeline based on 26Al indicates that chondrules began to form 1 to 2 Ma after most CAIs formed, that accretion of meteorite parent bodies was essentially complete by 4 Ma after CAIs, and that metamorphism was essentially over in type 4 chondrite parent bodies by 5 to 6 Ma after CAIs formed. Type 6 chondrites apparently did not cool until more than 7 Ma after CAIs formed. This timeline is consistent with 26Al as a principal heat source for melting and metamorphism.  相似文献   

8.
Abstract— Metallic Cu of moderately high purity (~985 mg/g Cu, ~15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically ≤20 μm) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 × 10?4 vol%, corresponding to only 4–5% of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/mm2 have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilite; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.  相似文献   

9.
Abstract There are two types of glass-rich chondrules in unequilibrated ordinary chondrites (OC): (1) porphyritic chondrules containing 55–85 vol% glass or microcrystalline mesostasis and (2) nonporphyritic chondrules, containing 90–99 vol% glass. These two types are similar in mineralogy and bulk composition to previously described Al-rich chondrules in OC. In addition to Si-, Al- and Na-rich glass or Ca-Al-rich microcrystalline mesostasis, glass-rich chondrules contain dendritic and skeletal crystals of olivine, Al2O3-rich low-Ca pyroxene and fassaite. Some chondrules contain relict grains of forsterite ± Mg-Al spinel. We suggest that glass-rich chondrules were formed early in nebular history by melting fine-grained precursor materials rich in refractory (Ca, Al, Ti) and moderately volatile (Na, K) components (possibly related to Ca-Al-rich inclusions) admixed with coarse relict forsterite and spinel grains derived from previously disrupted type-I chondrules.  相似文献   

10.
Abstract— We address the origin of “dusty,” metal-bearing relict olivine grains in chondrules. It has been suggested previously that these grains may be either primitive condensates or derived from a previous generation of chondrules. In this paper, we infer the original composition of dusty olivine grains, before they were reduced, and examine the possibility that they were derived from a previous generation of chondrules. Original compositions of dusty grains, including their estimated initial FeO contents and their minor element contents, match closely with compositions of olivines from chondrules in unequilibrated chondrites. In addition, the cores of some dusty grains are unaltered, and the compositions of these cores are also consistent with a chondrule origin. Therefore, we conclude that a derivation from a previous generation of chondrules is a plausible origin for these relicts. Although alternative origins, such as condensates or interstellar grains, cannot be ruled out on the basis of the available data, chondrules are an obvious source, and we suggest that this is the most likely interpretation. If this is the case, it is additional evidence for the importance of recycling of chondrule material in the chondrule-forming region.  相似文献   

11.
The diversity of silicate, glassy spherules analogous to chondrules, called microchondrules, and the implications for their presence in unequilibrated ordinary chondrites (UOCs) were investigated using different electron microscope techniques. Our observations show that the abundance of microchondrules in UOCs is much larger than the values proposed by previous studies. We identified two different types of microchondrules, porous and nonporous, embedded within fine‐grained matrices and type I chondrule rims. The porous microchondrules are characterized by distinctive textures and chemical compositions that have not been recognized previously. Additionally, we show detailed textures and chemical compositions of protuberances of silicate materials, connected to the chondrules and ending with microchondrules. We suggest that microchondrules and protuberances formed from materials splattered from the chondrules during stochastic collisions when they were still either completely or partially molten. The occurrence and distinct morphologies of microchondrules and protuberances suggest that rather than just a passive flash melting of chondrules, an additional event perturbed the molten chondrules before they underwent cooling. The bulk chemical compositions suggest that (1) nonporous microchondrules and protuberances were formed by splattering of materials that are compositionally similar to the bulk silicate composition of type I chondrules, and (2) the porous microchondrules could represent the splattered melt products of a less evolved, fine‐grained dust composition. The preservation of protuberances and microchondrules in the rims suggests that the cooling and accretion rates were exceptionally fast and that they represent the last objects that were formed before the accretion of the parent bodies of OCs.  相似文献   

12.
Abstract— A new organic parameter is proposed to show a chemical sequence of organic matter in carbonaceous chondrites, using carbon, hydrogen, and nitrogen concentrations of solvent‐insoluble and high‐molecular weight organic matter (macromolecules) and the molecular abundance of solvent‐extractable organic compounds. The H/C atomic ratio of the macromolecule purified from nine CM chondrites including the Murchison, Sayama, and seven Antarctic meteorites varies widely from 0.11 to 0.72. During the H/C change of ?0.7 to ?0.3, the N/C atomic ratio remains at ?0.04, followed by a sharp decline from ?0.040 to ?0.017 between H/C ratios from ?0.3 to ?0.1. The H/CN/C sequence shows different degrees of organic matter thermal alteration among these chondrites in which the smaller H/C‐N/C value implies higher alteration levels on the meteorite parent body. In addition, solvent‐extractable organic compounds such as amino acids, carboxylic acids, and polycyclic aromatic hydrocarbons are abundant only in chondrites with macromolecular H/C values >?0.5. These organic compounds were extremely depleted in the chondrites with a macromolecular H/C value of <?0.5. Possibly, most solvent‐extractable organic compounds could have been lost during the thermal alteration event that caused the H/C ratio of the macromolecule to fall below 0.4.  相似文献   

13.
Abstract— Microfossils have been separated and identified in four high metamorphic grade chondrites from Allan Hills and Queen Alexandra Range, Antarctica. Diatoms and opal phytoliths representing both marine and terrestrial flora were recognized among the dust removed from cracks in all meteorites studied. It is likely that contamination of Antarctic meteorites with such biogenic material is ubiquitous. Standard clean room procedures to avoid laboratory introduction of microfossils into the meteorites were followed, and the genera and species identified so far are characteristic of marine, freshwater, and continental environments. The most probable mechanism for introduction of the microfossils into the meteorites is eolian transport to and on the polar ice cap. It is likely that wind-driven systems may sample atmospherically transported material from large portions of the southern hemisphere. Entrainment of terrestrial microfossils is probably a typical interaction of meteorites with the Antarctic environment and must be recognized and accounted for in any attempt to use Antarctic meteorites as sources of extraterrestrial life forms. Organic molecules derived from microfossils are likely to be pervasive throughout any crack network present in a meteorite at all scales from millimeter to submicron. Cracks are a ubiquitous consequence of weathering in and on the Antarctic ice and the probability that crack surfaces contain terrestrial organic materials is high.  相似文献   

14.
Abstract— Nitrogen and Ar in more than 20 primitive ordinary chondrites were studied by a stepped combustion method. Several N carriers that are characterized by N isotopic composition, N release pattern and trapped Ar release pattern are recognized in the primitive ordinary chondrites. Large fractions of anomalous N and associated Ar are removed by acid treatment in most cases. The N isotopic anomalies cannot be explained by known presolar grains (with a possible exception of graphite), and some of the N isotopic anomalies may be due to unknown presolar grains. There is no specific relationship between the type of N carriers contained in an ordinary chondrite and the chemical type (H, L, or LL) of the chondrite. It is likely that as a result of impacts, the carriers of isotopically anomalous N were mixed in various parent bodies as rock fragments rather than as individual fine particles. The presence of distinctive N isotopic anomalies in primitive meteorites indicates that the primitive solar nebula may have been heterogeneous either spatially or temporally.  相似文献   

15.
Abstract— Carbon in the petrologic matrices of a number of ordinary chondrites of groups H, L, and LL, and of types 3 through 6 was studied with a nuclear microprobe and a Raman microprobe. The majority of the matrices had carbon contents in the narrow range between 0.03 and 0.2 wt%. The carbon content decreased only slightly with increasing petrologic type. Carbon-rich coats around troilite and/or metal phases occured in five meteorites. Poorly ordered carbon was found in the matrices. The carbon in the meteorites of higher petrologic types was slightly better ordered than in the meteorites of lower types. The narrow range of carbon contents and the similarity of the structural form of carbon in the matrices of the measured ordinary chondrites, which represent all groups and types, imply that their matrices may contain a common component, which might be of interstellar origin.  相似文献   

16.
Here we report in situ structural and chemical analyses of four presolar grains and the matrices of the Meteorite Hills (MET) 00526 L3.05 and Queen Alexandra Range (QUE) 97008 L3.05 unequilibrated ordinary chondrites (UOCs). The presolar grains in MET 00526 include one Fe-rich single crystal olivine, and one olivine grain that contains both amorphous and polycrystalline material. The single crystal olivine likely has origins in the circumstellar envelope (CSE) of a red giant branch (RGB) or asymptotic giant branch (AGB) star, and the amorphous/polycrystalline olivine has an O-isotopic composition consistent with origins in a type II supernova. The presolar grains from QUE 97008 are Fe rich and include one crystalline, stoichiometric olivine that contains a Ca-rich core and one crystalline, stoichiometric pyroxene grain, both of which have O-isotopic compositions consistent with origins in the CSEs of low-mass AGB/RGB stars. The matrices of both UOCs are mineralogically diverse with evidence for unaltered material in the form of amorphous silicates and a C-rich nanoglobule and altered material in the form of Ni-rich sulfides, abundant Fe-rich olivine, and Fe-Mg zoning in matrix silicates. No phyllosilicates were observed. The Fe-rich olivine grains are the dominant alteration phase in both UOCs and likely replaced primary amorphous silicates in the presence of an Fe-rich fluid during parent body alteration. Our work suggests that the ordinary and carbonaceous chondrites received a similar inventory of dust with comparable structures and chemistries.  相似文献   

17.
We have investigated the fine‐grained matrix of the least‐altered unequilibrated ordinary chondrite (UOC) Semarkona (LL3.00) using different electron microscope techniques. Unlike previous studies, which found that the matrix of Semarkona was extensively altered to phyllosilicates, we have discovered the widespread occurrence of much more pristine amorphous silicates in the sample that we have studied. Detailed TEM study shows that these materials occur pervasively in the matrix as (1) continuous groundmass; (2) distinct, circular to subrounded features, which contain nanometric‐size sulfides and carbides; or (3) distinct objects containing parallel, linear features composed of sulfides and voids. These amorphous silicates have many textural and compositional similarities to the occurrences of amorphous silicates found in pristine carbonaceous chondrites (CCs); however, minor differences were also identified. Most of the textural and chemical differences suggest that these materials formed at different times and locations in the solar nebula, compared to matrix materials in CCs. Nevertheless, their occurrence suggests that the amorphous silicates in Semarkona formed by similar processes to those proposed for amorphous silicates in CCs, that is, rapid cooling that favored disequilibrium condensation of material evaporated during chondrule‐forming events. In addition, the occurrence of minimally altered amorphous silicates in Semarkona demonstrates that the effects of aqueous alteration, which have been widely described in this meteorite, are not pervasive. Instead, our new observations demonstrate that aqueous alteration has affected Semarkona heterogeneously and that locally, regions of much more pristine matrix that have escaped extensive alteration are still preserved within this meteorite. Such materials provide significant new insights into the pristine characteristics of ordinary chondrite matrix material that has not been previously available.  相似文献   

18.
Abstract— Densities and porosities of meteorites are physical properties that can be used to infer characteristics of asteroid interiors. We report density and porosity measurements of 42 pieces of 30 ordinary chondrites and provide a quantification of the errors of the gas pycnometer method used in this study. Based on our measurements, we find that no significant correlation exists between porosity and petrologic grade, chemical group, sample mass, bulk and grain density, or shock level. To investigate variations in porosity and density between pieces of a meteorite, we examined stones from two showers, Holbrook and Pultusk. Examination of nine samples of Holbrook suggests relative homogeneity in porosity and density between pieces of this shower. Measurements of three samples of Pultusk show homogeneity in bulk density, in contrast to Wilkison and Robinson (2000), a study that reported significant variations in bulk density between 11 samples of Pultusk. Finally, examination of two friable ordinary chondrites, Bjurböle and Allegan, reveal variability in friability and porosity among pieces of the same fall. We suggest that friable ordinary chondrites may have formed in a regolith or fault zone of an asteroid.  相似文献   

19.
Abstract— Based on optical microscopy and electron microprobe analysis of mafic minerals, four previously poorly described ordinary chondrites from Spain are classified. The classifications of Guareña (H6), Olmedilla de Alarcón (H5) and Reliegos (L5) are confirmed. Molina is reclassified as H5, based on new data.  相似文献   

20.
Abstract Experimentally produced analogues of porphyritic olivine (PO) chondrules in ordinary chondrites provide an important insight into chondrule formation processes. We have studied experimental samples with PO textures grown at three different cooling rates (2, 5 and 100 *C/h), and samples that have been annealed at high temperatures (1000–1200 °C) subsequent to cooling. These are compared with natural chondrules of similar composition and texture from the ordinary chondrites Semarkona (LL3.0) and ALH 81251 (LL3.3). Zoning properties of olivine grains indicate that the Semarkona chondrules cooled at comparable rates to the experiments. Zoning in olivine from chondrules in ALH 81251 is not consistent with cooling alone but indicates that the chondrules underwent an annealing process. Chromium loss from olivine is very rapid during annealing and calculated diffusion coefficients for Cr in olivine are very similar to those of Fe-Mg interdiffusion coefficients under the same conditions. Annealed experimental samples contain an aluminous, low-Ca pyroxene which forms by reaction of olivine and liquid. No similar reaction texture is observed in ALH 81251 chondrules, and this may be evidence that annealing of the natural samples took place at considerably lower temperatures than the experimental analogues. The study supports the model of chondrule formation in a cool nebula and metamorphism of partly equilibrated chondrites during reheating episodes on the chondrite parent bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号