首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

2.
Abstract— Antarctic meteorites have been and are being well studied but the potential for glaciological and climatological information in the sites where they are found is only beginning to be realized. To date, meteorite stranding surfaces have been identified only in East Antarctica: (1) The MacKay Glacier/David Glacier region contains the Allan Hills and the Reckling Moraine/Elephant Moraine stranding surfaces. Because the Allan Hills Main Icefield has a large proportion of meteorites with long terrestrial ages, these concentrations of meteorites must have had catchment areas extending well inland, in contrast to the present. Where known, bedrock topography is mesa-like in form and influences ice flow directions. Ice levels at the Allan Hills may have been higher by 50–100 m in the past. Reckling Moraine and Elephant Moraine are located on a long patch of ice running westward from Reckling Peak; the ice appears to be pouring over a bedrock escarpment. (2) In North Victoria Land, ice diverges around Frontier Mountain and flows into a site behind the barrier where ablation occurs extensively. It is proposed that meteorites and rocks were dumped by ice flow at the mouth of a valley in the lee of the mountain at the site where a meltwater pond existed, in a depression produced by ablation. Later, the pond migrated headward along the valley to a point where it is today, leaving a morainal deposit with the meteorites at a higher level. (3) Between the Beardmore and Law Glaciers, ice flows sluggishly into the southwestern margin of the Walcott Névé. Northeastern sections of the Walcott are virtually barren of meteorites. The entering Plateau ice is diverted northward to flow along the base of Lewis Cliff. This flow apparently terminates in an ice tongue protruding into a vast moraine, where a very large concentration of meteorites was found on the ice. This final segment of flowing ice is called the Lewis Cliff Ice Tongue. Meteorite Moraine, a subsidiary occurrence 2 km to the northeast, is also found against morainal deposits. The origin of the moraines and the history of meteorite concentration at this site is the subject of some debate. (4) The Transantarctic Mountains are submerged along one segment many hundreds of km in length by ice flowing off the Polar Plateau. The Thiel Mountains, Pecora Escarpment and Patuxent Range are the only surface indications of the underlying mountains along this interval, and meteorite stranding surfaces are found at each of these sites. Little is yet known about ice dynamics at these sites. (5) The immense Yamato Mountains meteorite stranding surface covers an area of about 4000 km2. So far, most meteorites have been recovered in the upper reaches of this blue ice field, where ice flow is slowed by outlying subice barriers of the Yamato Mountains. Individual massifs in this range extend northward over 50 km, and the Yamato Meteorite Icefield loses 1100 m in elevation over this distance. (6) The Sør Rondane Mountains form a barrier to ice flow off the Polar Plateau. The major meteorite stranding surface associated with this barrier is the Nansenisen Icefield, a large ablation area about 50 km upstream of the mountains. The existence of a meteorite stranding surface at this site has not been explained so far. Most meteorite stranding surfaces have been functioning for a long time. They are sites where net ablation of the surface is occurring; the ice at these sites is stagnant or flowing only slowly, and the numbers of meteorites with great terrestrial ages decrease exponentially. Concentration mechanisms operating at these sites involve ablation, direct infall, time, low temperatures, moderate weathering and wind ablation. Detrimental to concentration are ice flow out of the area and extreme weathering. In spite of the fact that the Antarctic Ice Sheet is thought to be over 10 Ma old, we do not find stranding surfaces with meteorites having greater terrestrial ages than 1 Ma. This suggests that stranding surfaces are transient features, affected on a continental scale by possible extreme warming during late Pliocene and on a smaller scale by regional changes that produce differential effects between icefields. The latter effect is suggested by differences in the average terrestrial age of meteorites at different stranding surfaces. In either case, these sites seem to appear as a result of thinning near the edges of the ice sheet, and stratigraphic sequences may be exposed in the ice at stranding surfaces. We review five models for the production of meteorite stranding surfaces: (1) simple deflation of the ice sheet, in which ablation removes great thicknesses of overlying ice, exposing the contained meteorites while allowing direct falls to accumulate, (2) simple accumulation of direct falls on a bare ice surface that is not deflating, (3) ablation of ice trapped against a barrier, in which meteorites accumulate by direct infall while inflowing ice contributes meteorites by ablation discovery, (4) deceleration of ice by a subice barrier, which allows ablation discovery of meteorites in incoming ice and accumulation of other meteorites on the surface by direct infall and (5) stagnation of ice by encounter with an ice mass able to produce an opposing flow vector, in which ablation discovery and direct infall accumulation processes operate to build the meteorite concentration.  相似文献   

3.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be (half-life = 1.51 × 106 a), 26Al (7.05 × 105 a) and 36Cl (3.01 × 105 a) in Lewis Cliff (LEW) 86360, an L-chondrite from the Lewis Cliff stranding area, East Antarctica. In addition, the concentrations and isotopic compositions of He, Ne and Ar were measured. The combined results yield a terrestrial age of 2.35 ± 0.15 Ma. Only one other stony meteorite with a similar terrestrial age (~2 Ma) is known from the Allan Hills stranding area (ALH 88019), whereas all previously dated stony meteorites from Antarctica are younger than 1 Ma. We argue that LEW 86360 spent most of its terrestrial residence time deep inside the ice, near the base of the glacier, where ice flow rates are much lower than at the surface. The terrestrial ages of LEW 86360 and ALH 88019 are consistent with existing hypotheses concerning the stability and persistence of the East Antarctic ice sheet.  相似文献   

4.
Abstract We measured the concentrations of F, Cl, Br and I in two different aliquots of the meteorite ALH 82102. This H5 chondrite was recovered at the Allan Hills region, while it was partially embedded in the ice. One aliquot was taken from that part of the surface of the meteorite that was still in the ice, and the other one was taken from the side, which was poking out of the ice. Both aliquots are highly, and nearly to the same degree, contaminated with halogens. The observed enrichments occurred mainly during the time the meteorite was lying on the surface of the ice by deposition and/or adsorption of aerosols, salts, and gaseous components. A contamination during the time it was covered by the ice is unlikely. We conclude, therefore, that this meteorite was not always buried in the ice during its “residence time” on Earth. In order to accumulate the observed contamination, it had to be on the surface of the ice part of the time between its fall onto the Earth and its collection. The age of the ice surrounding the meteorite cannot be equal to the measured terrestrial age of ALH 82102.  相似文献   

5.
Abstract— Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.  相似文献   

6.
7.
Abstract— Spherical carbonate globules of similar composition, size, and radial Ca‐, Mg‐, and Fe‐zonation to those in martian meteorite Allan Hills (ALH) 84001 were precipitated from Mg‐rich, supersaturated solutions of Ca‐Mg‐Fe‐CO2‐H2O at 150 °C. The supersaturated solutions (pH ? 6–7) were prepared at room temperature and contained in TeflonTM‐lined stainless steel vessels, which were sealed and heated to 150 °C for 24 h. Experiments were also conducted at 25 °C and no globules comparable to those of ALH 84001 were precipitated. Instead, amorphous Fe‐rich carbonates were formed after 24 h and Mg‐Fe calcites formed after 96 h. These experiments suggest a possible low‐temperature inorganic origin for the carbonates in martian meteorite ALH 84001.  相似文献   

8.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

9.
The Allan Hills A77307 meteorite has variously been described as a CO, CV, and a unique CO-CM related chondrite. We have found that its thermolum-inescence properties are very different from the established members of the CO chondrite class; it has a TL peak at 170 and a suggestion of a peak at 250°C, while CO chondrites have peaks at 91 ± 7 and 203 ± 11°C. Either the meteorite has suffered some form of alteration or it is not a normal CO chondrite. The latter is consistent with petrologic and compositional data which we interpret to indicate that although Allan Hills A77307 is related to CO chondrites it is not a normal member of that group.  相似文献   

10.
Abstract— Following discoveries of blue ice areas in Greenland resembling meteorite‐bearing blue ice fields in Antarctica, a surface search of several of the most promising sites was carried out in August 2003. The ice fields are located in Kong Christian X Land, in northeastern Greenland around 74°N at elevations between 2100 and 2400 m. No meteorites were found in any of the localities that were searched. Evidence of occasional significant melting (filled crevasses and melt sheets) suggest that summer temperatures are sometimes high enough that dark rocks, like meteorites, can melt through the upper layers of ice. Small terrestrial rocks and cryogenite were found down to 50 cm below the ice surface. Meter‐sized terrestrial rocks were found on top of the ice downstream from nunataks. These rocks shade the ice below, and since they were apparently too massive to warm up during warm days, they remained at the surface as the surrounding ice ablated away. Our findings strongly suggest that Greenland is currently unlikely to harbor significant meteorite concentrations on blue ice fields.  相似文献   

11.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

12.
Abstract— The relative abundance of different compositional types and mass frequency distributions are presented for four meteorite samples (the modern falls, Antarctic finds, Yamato finds and Allan Hills Main Icefield finds). The modern falls sample represents continuous collection of a known number of falls over a short timespan, while the Antarctic samples represent a longer timespan and an unknown number of falls. The Allan Hills Main Icefield sample has many desirable collection characteristics indicating it best represents Antarctic meteorites. By retabulating the modern falls to create a sample with characteristics similar to those of the Allan Hills Main Icefield finds, we can directly compare the two. The mass frequency distributions of Antarctic samples exhibit a tail toward the larger sizes and thus differ from that of the modern falls (which approximates a normal curve). In general, normal and power law models prove to be inadequate to explain the observed mass frequency distributions, possibly because they fail to correctly account for atmospheric and collection effects. Non-parametric statistics show that it is unlikely that the two are good samples of a single steady-state meteoritic complex. In addition, there is an excess in numbers of small H chondrites in Allan Hills Main Icefield finds relative to modern falls which is not easy to explain given modern showerfall rates of occurrence. This supports the view that the delivery of meteoritic material to Earth might be variable over the short timescale represented by these samples.  相似文献   

13.
Abstract— Miono et al. (1990) and Miono and Nakanishi (1994) have proposed that the build‐up of natural thermoluminescence (TL) in a drained layer directly below the meteorite fusion crust can be used to determine terrestrial ages of meteorites in the 40 to 200 ka range. We have measured the natural TL of the drained layer of 15 meteorites. The data indicate that this technique could be used to determine terrestrial ages of meteorites with ages <200 ka, after which TL equilibrium is reached. Comparison of TL build‐up with terrestrial ages for a suite of Antarctic meteorites suggests that the meteorites have been exposed to temperatures of 0 to 5 °C. The close correspondence between natural TL levels and surface exposure TL growth curves suggest that Allan Hills meteorites with ages <200 ka have spent a significant portion of their terrestrial history exposed on the ice surface, rather than being buried in the ice sheet. The technique is, however, sensitive to thermal history; and, for Antarctic meteorites with terrestrial ages <200 ka, natural TL of the drained zone largely reflects exposure on the ice surface.  相似文献   

14.
Abstract— Thirty years of recoveries in East Antarctica have led to significant understanding of the regional characteristics associated with meteorite stranding surfaces. In Antarctica these sites are characterized by patches of snow‐free blue ice at high altitude on the icesheet in regions where iceflow is highly restricted. Melting is extremely rare or absent and sublimation rates are high, even though meteorite stranding surfaces are predominantly found within regions where accumulation typically dominates. Localized environmental conditions that persist for thousands of years or longer appear to be the dominant factor rather than shorter‐term or seasonal cycles. In this paper we describe our discovery of regions in Northeast Greenland with blue ice areas that exhibit many of the requisite characteristics, suggesting that they are excellent prospects for future meteorite recovery efforts.  相似文献   

15.
Abstract— We determined terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica, on the basis of the concentrations of cosmogenic 10Be (t½; = 1.51 Ma), 26Al (t½; = 0.705 Ma), and 36Cl (t½; = 0.301 Ma). After an initial 26Al γ-ray survey of 91 meteorites suggested that many have terrestrial ages >0.1 Ma, we selected 62 meteorites for 10Be and 26Al measurements by accelerator mass spectrometry (AMS) and measured 36Cl in twelve of those. Low terrestrial ages (<0.1 Ma) were found for ~60% of the meteorites, whereas all others have ages between 0.1 and 0.5 Ma, except for one exceptional age of >2 Ma (Welten et al., 1997). Our major conclusions are: (1) The Lewis Cliff H-chondrites show similar ages to those from the Allan Hills icefields, but the L-chondrites are about a factor of 2 younger than those from Allan Hills, which indicates that Lewis Cliff is a younger stranding area. (2) The terrestrial age distributions at different parts of the Lewis Cliff stranding area generally agree with simple meteorite concentration models, although differences in weathering rate may also play a role. (3) We confirm that meteorites with natural thermoluminescence (TL) levels >80 krad are associated with low terrestrial ages (Benoit et al., 1992) but conclude that natural TL levels <80 krad can not be used to calculate the terrestrial age of a meteorite. Natural TL levels do seem useful to estimate relative terrestrial ages of large groups of meteorites and to determine differences in the surface exposure age of paired meteorite fragments. (4) Of the 62 meteorites measured with AMS, 31 were assigned to 11 different pairing groups, mainly on the basis of their cosmogenic nuclide record. The meteorites are estimated to represent between 42 and 52 distinct falls.  相似文献   

16.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

17.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

18.
Allan Hills A79003 is an LL3 chondrite with a petrologic subtype of 3.4 ± 0.2. Contrary to previous suggestions, it is not paired with other Allan Hills specimens. It contains haxonite, (Fe, Ni)23C6; shock-melted, ‘fizzed’ metal-troilite intergrowths; and translucent, glassy-looking Huss matrix (fine-grained, Fe-rich silicate matrix), in addition to the normal opaque and recrystallized varieties of Huss matrix. Some chondrules are partly coated with opaque matrix, others with translucent matrix. Translucent matrix is more uniform in composition and contains less S, CaO and FeO and more MgO than the opaque variety. Both kinds of matrix rimmed chondrules before consolidation of the meteorite.  相似文献   

19.
Abstract– The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magma’s estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral‐melt Ti distribution coefficient. Overall, most of the basalt fragments are low‐Ti basalts (1–6% TiO2), with a significant proportion of very‐low‐Ti basalts (<1% TiO2). Only a few basalt clasts were high‐Ti or intermediate Ti types (>10% TiO2 and 6–10% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV‐Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high‐Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moon’s oldest volcanism.  相似文献   

20.
Abstract– Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter‐sized steel spheres. We utilized a 40 m two‐stage light‐gas gun to achieve impact velocities of up to 5.4 km s?1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号