首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both of these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar > Kr > Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum δ15N value ≥+150‰ and a more probable value ≥+200‰.  相似文献   

2.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

3.
Abstract— We report nitrogen isotopic data obtained from a stepwise gas release of two grain-size fractions of the gas-rich meteorite Pesyanoe. Cosmic-ray-produced 15Nc may be present in all temperature steps ≥600 °C, and we correct this component using spallation 21Ne data. The resulting ratios reveal the presence of more than one trapped N component. Indigenous N is released above 1000 °C with an isotopic signature of δ15N = ?33‰. This is consistent with the rather uniform signatures of indigenous nitrogen in enstatite meteorites. There is no evidence for the presence of “very light” N of δ15N ? ?200‰. On the other hand, a “heavy” nitrogen component appears in the temperature range 700–800 °C, and coincides with a major release of solar-type noble gases. For a two-component mixture, the isotopic shifts in this temperature range define a lower limit δ15Ncorr = ?6‰ for the second component (e.g., solar-type nitrogen). However, for the case of a solar-type component, the calculated δ15N signature depends on the adopted elemental abundances. For example, adoption of the relative abundances of 14N and noble gases in lunar ilmenite 71501 yields δ15N ? +170, which is in the range of the heavier nitrogen signatures observed on the lunar surface.  相似文献   

4.
The cyclic evolution of the heliospheric plasma parameters is related to the time-dependent boundary conditions in the solar corona. “Minimal” coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower solar wind is adjacent to coronal streamers. Irregular dynamic manifestations are present in the corona and the solar wind everywhere and always. They follow the solar activity cycle rather well. Because of this, the direct and indirect solar wind measurements demonstrate clear variations in space and time according to the minimal, intermediate and maximal conditions of the cycles. The average solar wind density, velocity and temperature measured at the Earth’s orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the emphasis on the cycles.  相似文献   

5.
The action of the solar corpuscular radiation on the rotational properties of small interplanetary dust particles is investigated. It is shown that the solar wind increases the angular momentum (spin) of the particle. Analytic solutions are presented for dominant terms in which quantities of the orders (v/u) n ,n 1, are neglected (v is the orbital velocity of dust particle around the Sun andu is the speed of the solar wind particles).  相似文献   

6.
Helical waves of large amplitude observed recently in the tail of Comet Kohoutek are interpreted as stable waves arising due to non-linear evolution of Kelvin-Helmholtz instability. The dispersion equation for waves of a finite amplitude shows that the phase velocity of these waves should approximately coincide with the velocity of the plasma outflow in the tail rather than with the Alfvén velocity. This fact is shown to be in agreement with observations. One may estimate the magnetic field in the Comet Kohoutek tail from both the amplitude of observed helical waves and the pressure balance at the tail boundary. The field turns out to be of the order of the interplanetary magnetic field or less, i.e. ?25 γ near ~0.5 AU.  相似文献   

7.
Basu  D. 《Solar physics》1999,184(1):153-156
A relationship was found earlier (Basu, 1982, 1992) between the solar neutrino flux and the flux of solar wind particles received on the Earth. However, the data used in these analyses have recently been revised and extended. This prompted us to re-examine the relationship using the new updated solar neutrino data base. The present analysis confirms the earlier findings and establishes that the two quantities are related at statistically significant levels. This suggests that the two may have a common cause of origin in the interior of the solar atmosphere and needs further investigation.  相似文献   

8.
The mathematical basis for approximating the solar wind expansion as nearly radial is examined and defined, removing earlier restrictions thought to occur in the presence of a magnetic field and large variations in latitude. The equations and side conditions governing quasi-radial flow are derived and solved for a simple example to illustrate how this technique can be used for global models of the solar wind.  相似文献   

9.
10.
Su Qing-Rui 《Solar physics》1985,102(1-2):159-164
With the assumption that the magnetic field lines are radial at some quite high level in the solar corona, a non-constant shearing magnetic field is introduced into the magnetohydrostatic equations. It is found that a same critical amount of shearing a magnetic island is formed and then breaks out to form an open magnetic configuration in which resistive tearing-mode instability may occur, and may initiate a two-ribbon flare. In addition, high shearing magnetic fields are investigated. It is shown that high shearing magnetic configurations are weak two-dimensional neutral sheets, the instability of which has been studied by Janicke (1982).  相似文献   

11.
Recent U.S.S.R. studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S.A. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for Moon, Mars, Venus, Earth and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973  相似文献   

12.
Assuming that the lateral variations of density in the lunar crust, the crustal density anomalies, are responsible for the lateral undulations of the lunar gravitational potential, we compute these anomalies for four different lunar models, which include an entirely solid Moon and three different solid lunar models with partially molten layers located within 600 km depth. The stress differences created by the density anomalies are determined for these models. It is found that, since the formation of the mascons, the entirely solid lunar model should have supported stress differences of the order of 70 bars while in the case of the other models, the solid layer overlying the partially molten one should have supported stress differences of more than 100 bars. The high stress differences associated with the partially molten models lead us to conclude that these models are not proper ones, and thus the Moon has always been solid since the formation of the mascons. Lunar Science Institute Contribution No. 97. The research in this paper was done while the author was a Visiting Scientist at the Lunar Science Institute, which is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

13.
Electromagnetic induction in a stratified Moon with a trailing cavity is discussed. The influence of the Moon wake is studied by using a two-layer lunar model with a perfectly conductive core. The magnetic field is shown to be independent of the wake length when that quantity is greater than 3 lunar radii. Regions on the sunlit and dark sides where the magnetic field may be described in terms of its first spatial harmonic have been distinguished, together with the corresponding errors admitted. It is in these regions that the electrical conductivity of the Moon can be found with very high accuracy, by simultaneous observations on the lunar surface and in the undisturbed solar wind. Results of these observations can be conveniently related to values of the apparent resistivity. Translated by Miss Eva Vokálová of the Astronomical Institute, Charles University, Prague, Czechoslovakia.  相似文献   

14.
15.
The discovery of Mercury's magnetosphere by Mariner 10 was surprising since the conventional view of regenerative planetary dynamos had been that the spin requirement would likely have been in excess of the observed spin rate of Mercury. Also internal fluid motions were not expected to be sufficiently large. This paper explores the alternative model of the formation of Mercury's magnetosphere via electromagnetic induction forced by the solar wind. It is shown, however, that the constraints are so severe as to limit severely the applicability of such a model. Although induction is easily observed on the Moon, the modification of the magnetic boundary condition associated with a plasma magnetosphere on Mercury rules out its formation via induction except for interplanetary driving fields which are decreasing in amplitude. That model is explored but retains the difficulty that induced magnetospheres tend to be of small radial and temporal extent compared to that inferred by Ness et al. for Mercury.  相似文献   

16.
17.
18.
The Malkus theory of a precessionally driven magnetoturbulence in a liquid core is applied to the Moon. It is shown that a lunar magnetic field requires the presence of a non-metallic core at at least 2500K or of an iron core at at least 2000K. Within the limits of our present knowledge these requirements may have been satisfied in the past. A new mechanism is proposed which is based on tidal effects in the outer solid and liquid shells whose existence is suggested by measurements of lunar radioactivity. This mechanism could account for the generation of local rather than poloidal fields at low latitudes in agreement with observation.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

19.
Using data from the present gravitational potential and surface topography of the Moon, it is possible to determine a lower limit of about 5 b.y. for the relaxation time of the mascons. Assuming that the Moon has behaved as a Maxwellian viscoelastic body since the formation of the mascons, this relaxation time indicates a value of about 1027 poise for the viscosity of the lunar interior. Such a high viscosity implies that there has been no convection current inside the upper 800 km of the Moon since the formation of the mascons. Lunar Science Institute Contribution No. 99. The research in this paper was done while the author was a Visiting Scientist at the Lunar Science Institute, which is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

20.
A model is presented for the lateral variations of density within the Moon. The model gives rise to a gravitational potential which is equal to the observed potential at the lunar surface, moreover, it minimizes the total shear-strain energy of the Moon. The model exhibits lateral variations of about ±0.25 g cc–1 within 50 km depth. The variations, however, reduce to ±0.06 and ±0.008 g cc–1 within layers at 50–135 and 135–235 km respectively, and they become negligible below this region. The associated stress differences are found to be about 50 bar within 600 km depth, having their maximum values of about 90 bars at a depth of about 250 km. On the basis of these stress differences a strength of about 100 bar is concluded for the upper 400 km of the lunar interior for the last 3.3 b.y.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration. This paper is Lunar Science Institute Contribution No. 117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号