首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental trace element partitioning values are often used to model the chemical evolution of metallic phases in meteorites, but limited experimental data were previously available to constrain the partitioning behavior in the basic Fe‐Ni system. In this study, we conducted experiments that produced equilibrium solid metal and liquid metal phases in the Fe‐Ni system and measured the partition coefficients of 25 elements. The results are in good agreement with values modeled from IVB iron meteorites and with the limited previous experimental data. Additional experiments with low levels of S and P were also conducted to help constrain the partitioning behaviors of elements as a function of these light elements. The new experimental results were used to derive a set of parameterization values for element solid metal–liquid metal partitioning behavior in the Fe‐Ni‐S, Fe‐Ni‐P, and Fe‐Ni‐C ternary systems at 0.1 MPa. The new parameterizations require that the partitioning behaviors in the light‐element–free Fe‐Ni system are those determined experimentally by this study, in contrast to previous parameterizations that allowed this value to be determined as a best‐fit parameter. These new parameterizations, with self‐consistent values for partitioning in the endmember Fe‐Ni system, provide a valuable resource for future studies that model the chemical evolution of metallic phases in meteorites.  相似文献   

2.
Abstract— ‐Iron meteorites exhibit a large range in Ni concentrations, from only 4% to nearly 60%. Most previous experiments aimed at understanding the crystallization of iron meteorites have been conducted in systems with about 10% Ni or less. We performed solid metal/liquid metal experiments to determine the effect of Ni on partition coefficients for 20 trace elements pertinent to iron meteorites. Experiments were conducted in both the end‐member Ni‐S system as well as in the Fe‐Ni‐S system with intermediate Ni compositions applicable to high‐Ni iron meteorites. The Ni content of the system affects solid metal/liquid metal partitioning behavior. For a given S concentration, partition coefficients in the Ni‐S system can be over an order of magnitude larger than in the Fe‐S system. However, for compositions relevant to even the most Ni‐rich iron meteorites, the effect of Ni on partitioning behavior is minor, amounting to less than a factor of two for the majority of trace elements studied. Any effect of Ni also appears minor when it is compared to the large influence S has on element partitioning behavior. Thus, we conclude that in the presence of an evolving S‐bearing metallic melt, crystallization models can safely neglect effects from Ni when considering the full range of iron meteorite compositions.  相似文献   

3.
The depletion of volatile siderophile elements (VSE) Sn, Ag, Bi, Cd, and P in mantles of differentiated planetary bodies can be attributed to volatile‐depleted precursor materials (building blocks), fractionation during core formation, fractionation into and retention in sulfide minerals, and/or volatile loss associated with magmatism. Quantitative models to constrain the fractionation due to core formation have not been possible due to the lack of activity and partitioning data. Interaction parameters in Fe‐Si liquids have been measured at 1 GPa, 1600 °C and increase in the order Cd (~6), Ag (~10), Sn (~28), Bi (~46), and P (~58). These large and positive values contrast with smaller and negative values in Fe‐S liquids indicating that any chalcophile behavior exhibited by these elements will be erased by dissolution of a small amount of Si in the metallic liquid. A newly updated activity model is applied to Earth, Mars, and Vesta. Five elements (P, Zn, Sn, Cd, and In) in Earth's primitive upper mantle can largely be explained by metal‐silicate equilibrium at high PT conditions where the core‐forming metal is a Fe‐Ni‐S‐Si‐C metallic liquid, but two other—Ag and Bi—become overabundant during core formation and require a removal mechanism such as late sulfide segregation. All of the VSE in the mantle of Mars are consistent with core formation in a volatile element depleted body, and do not require any additional processes. Only P and Ag in Vesta's mantle are consistent with combined core formation and volatile‐depleted precursors, whereas the rest require accretion of chondritic or volatile‐bearing material after core formation. The concentrations of Zn, Ag, and Cd modeled for Vesta's core are similar to the concentration range measured in magmatic iron meteorites indicating that these volatile elements were already depleted in Vesta's precursor materials.  相似文献   

4.
Abstract– Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe‐Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1 MPa experiments with two coexisting immiscible metallic liquids in the Fe‐S‐Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si‐free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite‐rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.  相似文献   

5.
Abstract— Magmatic iron meteorites are commonly thought to have formed by fractional crystallization of the metallic cores of asteroid‐sized bodies. As fractional crystallization proceeds, light elements such as P and S become enriched in the molten portion of the core. The light element content of the metallic liquid influences the partitioning behavior of trace elements and may cause liquid immiscibility to occur. The elemental trends observed in magmatic iron meteorites may have been affected by both of these processes. We have examined experimentally the effect of P on the solid‐metal‐liquid‐metal partitioning behavior of Ag and Pd, Re and Os, two element pairs used to date iron meteorite processes. Phosphorus has no effect on the partition coefficient of either Ag or Pd, which are incompatible and identical within experimental error. Compatible Re and Os also have identical partitioning behavior, within experimental error, and show increasing compatibility in the solid metal with increasing P content of the metallic liquid. Including the effects of both S and P on the partitioning behavior of Re and Os, simple fractional crystallization calculations can reproduce the large variation of Re and Os concentrations observed in four magmatic iron meteorite groups but have difficulty matching the later crystallizing portions of the trends. We have also conducted experiments with three phases—solid metal and two immiscible metallic liquids—to determine the location of the liquid immiscibility field near conditions thought to be relevant to magmatic iron meteorites. Our results show a significantly smaller liquid immiscibility field as compared to the previously published Fe‐P‐S phase diagram. Our revised phase diagram suggests that liquid immiscibility was encountered during the crystallization of asteroidal cores, but much later during the crystallization process than predicted by the previously published diagram.  相似文献   

6.
Oxygen has been considered a potentially important light element in metallic liquids during a range of planetary processes, yet the influence of O in a metallic melt on element partitioning behavior is largely unknown. To investigate the effect of O in such systems, we conducted experiments in the Fe‐S‐O system, doped with 25 trace elements, which produced two immiscible metallic liquids. Our results indicate that the presence of O in the metallic liquid produces a distinctive chemical signature for W and Ga in particular. Tungsten shows an affinity for O in the metallic liquid and partitions more strongly into the metallic melt in the presence of O. The partitioning of Ga is relatively constant despite the presence of O, which is in contrast to the majority of the other siderophile elements in the study. Our experiments from 1400 to 1600 °C show no significant effect from temperature on the partitioning behavior of any trace elements over this limited temperature range. This distinctive chemical signature due to the presence of O in the metallic liquid has potential implications for modeling core formation, evaluating isotopic signatures produced by core crystallization, and interpreting chemical assemblages observed in meteorites.  相似文献   

7.
Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide‐metal assemblage MS‐166 was found highly enriched in wüstite (Fe1‐xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe‐sulfide and minor amounts of the outer Ni‐rich portions of the originally zoned metal in MS‐166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite‐rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni‐rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS‐166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.  相似文献   

8.
Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal–silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal–silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositions—C‐bearing and C‐free. The second series examines temperature effects for D(Re) in FeO‐bearing silicate melts and FeNi‐rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal–silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14 GPa, 2100 °C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal–silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general.  相似文献   

9.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   

10.
Models of planetary core formation beginning with melting of Fe,Ni metal and troilite are not readily applicable to oxidized and sulfur-rich chondrites containing only trace quantities of metal. Cores formed in these bodies must be dominated by sulfides. Siderophile trace elements used to model metallic core formation could be used to model oxidized, sulfide-dominated core formation and identify related meteorites if their trace element systematics can be quantified. Insufficient information exists regarding the behavior of these core-forming elements among sulfides during metamorphism prior to anatexis. Major, minor, and trace element concentrations of sulfides are reported in this study for petrologic type 3–6 R chondrite materials. Sulfide-dominated core-forming components in such oxidized chondrites (ƒO2 ≥ iron-wüstite) follow metamorphic evolutionary pathways that are distinct from reduced, metal-bearing counterparts. Most siderophile trace elements partition into pentlandite at approximately 10× chondritic abundances, but Pt, W, Mo, Ga, and Ge are depleted by 1–2 orders of magnitude relative to siderophile elements with similar volatilities. The distribution of siderophile elements is further altered during hydrothermal alteration as pyrrhotite oxidizes to form magnetite. Oxidized, sulfide-dominated core formation differs from metallic core formation models both physically and geochemically. Incongruent melting of pentlandite at 865°C generates melts capable of migrating along solid silicate grains, which can segregate to form a Ni,S-rich core at lower temperatures compared to reduced differentiated parent bodies and with distinct siderophile interelement proportions.  相似文献   

11.
The thermal history of Mars during accretion and differentiation is important for understanding some fundamental aspects of its evolution such as crust formation, mantle geochemistry, chronology, volatile loss and interior degassing, and atmospheric development. In light of data from new Martian meteorites and exploration rovers, we have made a new estimate of Martian mantle siderophile element depletions. New high pressure and temperature metal–silicate experimental partitioning data and expressions are also available. Using these new constraints, we consider the conditions under which the Martian mantle may have equilibrated with metallic liquid. The resulting conditions that best satisfy six siderophile elements—Ni, Co, W, Mo, P, and Ga—and are consistent with the solidus and liquidus of the Martian mantle phase diagram are a pressure of 14 ± 3 GPa and temperature of 2100 ± 200 K. The Martian mantle depletions of Cr and V are also consistent with metal–silicate equilibration in this pressure and temperature range if deep mantle silicate phases are also taken into account. The results are not consistent with either metal–silicate equilibrium at the surface or at the current‐day Martian core–mantle boundary. Recent measurements and modeling have concluded that deep (~17 GPa or 1350 km) mantle melting is required to explain isotopic data for Martian meteorites and the nature of differentiation into core, mantle, and crust. This is in general agreement with our estimates of the conditions of Martian core formation based on siderophile elements that result in an intermediate depth magma ocean scenario for metal–silicate equilibrium.  相似文献   

12.
Abstract— The measured Cu and Cr contents in magmatic iron meteorites appear to contradict the behavior predicted by experimental fractional crystallization studies currently available. To investigate the origin of Cu and Cr concentrations observed in these meteorites, a thorough set of solid metal/liquid metal experiments were conducted in the Fe‐Ni‐S system. In addition to Cu and Cr, partitioning values were also determined for As, Au, Bi, Co, Mo, Ni, Pb, Rh, Ru, Sb, Sn, V, and Zn from the experiments. Experimental results for Cu and Cr showed similar chalcophile partitioning behavior, whereas these elements have differently sloped trends within magmatic iron meteorite groups. Thus, fractional crystallization alone cannot control both the Cu and Cr concentrations in these iron meteorite groups. A simple fractional crystallization model based on our experimental Cu partitioning results was able to match the Cu versus Au trend observed in the S‐poor IVB iron meteorite group but not the decreasing Cu versus Au trends in the IIAB and IIIAB groups or the unique S‐shaped Cu versus Au trend in the IVA group. However, the crystallization model calculations were found to be very sensitive to the specific choice for the mathematical expression of D(Cu), suggesting that any future refinement of the parameterization of D(Cu) should include a reassessment of the Cu fractional crystallization trends. The Cr versus Au trends in magmatic iron meteorite groups are steeper than those of Cu and not explained by fractional crystallization. Other influences, such as the removal of chromite from the crystallizing system or sampling biases during iron meteorite compositional analyses, are likely responsible for the Cr trends in magmatic iron meteorite groups.  相似文献   

13.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   

14.
Abstract— Petrological and bulk geochemical studies were performed on a large silicate clast from the Mount Padbury mesosiderite. The silicate clast is composed mainly of pyroxene and plagioclase with minor amounts of ilmenite, spinel, and other accessory minerals, and it shows subophitic texture. Pyroxenes in the clast are similar to those in type 5 eucrites and could have experienced prolonged thermal metamorphism after rapid crystallization from a near‐surface melt. Ilmenite and spinel vary chemically, indicating growth under disequilibrium conditions. The clast seems to have experienced an episode of rapid reheating and cooling, possibly as a result of metal‐silicate mixing. Abundances of siderophile elements are obviously higher than in eucrites, although the clast is also extremely depleted in highly siderophile elements. The fractionated pattern can be explained by injection of Fe‐FeS melts generated by partial melting of metallic portions during metal‐silicate mixing. The silicate clast had a complex petrogenesis that could have included: 1) rapid crystallization from magma in a lava flow or a shallow intrusion; 2) prolonged thermal metamorphism to equilibrate the mineral compositions of pyroxene and plagioclase after primary crystallization; 3) metal‐silicate mixing probably caused by the impact of solid metal bodies on the surface of the mesosiderite parent body; and 4) partial melting of metal and sulfide portions (and silicate in some cases) caused by the collisional heating, which produced Fe‐FeS melts with highly fractionated siderophile elements that were injected into silicate portions along cracks and fractures.  相似文献   

15.
Abstract– Perryite [(Fe,Ni)x(Si,P)y], schreibersite [(Fe,Ni)3P], and kamacite (αFeNi) are constituent minerals of the metal‐sulfide nodules in the Sahara 97072 (EH3) enstatite chondrite meteorite. We have measured concentrations of Ni, Cu, Ga, Au, Ir, Ru, and Pd in these minerals with laser ablation, inductively coupled plasma mass spectrometry (ICP‐MS). We also measured their Fe, Ni, P, Si, and Co concentrations with electron microprobe. In kamacite, ratios of Ru/Ir, Pd/Ir, and Pd/Ru cluster around their respective CI values and all elements analyzed plot near the intersection of the equilibrium condensation trajectory versus Ni and the respective CI ratios. In schreibersite, the Pd/Ru ratio is near the CI value and perryite contains significant Cu, Ga, and Pd. We propose that schreibersite and perryite formed separately near the condensation temperatures of P and Si in a reduced gas and were incorporated into Fe‐Ni alloy. Upon further cooling, sulfidation of Fe in kamacite resulted in the formation of additional perryite at the sulfide interface. Still later, transient heating re‐melted this perryite near the Fe‐FeS eutectic temperature during partial melting of the metal‐sulfide nodules. The metal‐sulfide nodules are pre‐accretionary objects that retain CI ratios of most siderophile elements, although they have experienced transient heating events.  相似文献   

16.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

17.
Queen Alexandra Range (QUE) meteorite 94204 is an anomalous enstatite meteorite whose petrogenesis has been ascribed to either partial melting or impact melting. We studied the meteorite pairs QUE 94204, 97289/97348, 99059/99122/99157/99158/99387, and Yamato (Y)‐793225; these were previously suggested to represent a new grouplet. We present new data for mineral abundances, mineral chemistries, and siderophile trace element compositions (of Fe,Ni metal) in these meteorites. We find that the texture and composition of Y‐793225 are related to EL6, and that this meteorite is unrelated to the QUEs. The mineralogy and siderophile element compositions of the QUEs are consistent with petrogenesis from an enstatite chondrite precursor. We caution that potential re‐equilibration during melting and recrystallization of enstatite chondrite melt‐rocks make it unreliable to use mineral chemistries to assign a specific parent body affinity (i.e., EH or EL). The QUEs have similar mineral chemistries among themselves, while slight variations in texture and modal abundances exist between them. They are dominated by inclusion‐bearing millimeter‐sized enstatite (average En99.1–99.5) with interstitial spaces filled predominantly by oligoclase feldspar (sometimes zoned), kamacite (Si approximately 2.4 wt%), troilite (≤2.4 wt% Ti), and cristobalite. Siderophile elements that partition compatibly between solid metal and liquid metal are not enriched like in partial melt residues Itqiy and Northwest Africa (NWA) 2526. We find that the modal compositions of the QUEs are broadly unfractionated with respect to enstatite chondrites. We conclude that a petrogenesis by impact melting, not partial melting, is most consistent with our observations.  相似文献   

18.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

19.
We have studied the petrologic characteristics of sulfide‐metal lodes, polymineralic Fe‐Ni nodules, and opaque assemblages in the CR2 chondrite Graves Nunataks (GRA) 06100, one of the most altered CR chondrites. Unlike low petrologic type CR chondrites, alteration of metal appears to have played a central role in the formation of secondary minerals in GRA 06100. Differences in the mineralogy and chemical compositions of materials in GRA 06100 suggest that it experienced higher temperatures than other CR2 chondrites. Mineralogic features indicative of high temperature include: (1) exsolution of Ni‐poor and Ni‐rich metal from nebular kamacite; (2) formation of sulfides, oxides, and phosphates; (3) changes in the Co/Ni ratios; and (4) carbidization of Fe‐Ni metal. The conspicuous absence of pentlandite may indicate that peak temperatures exceeded 600 °C. Opaques appear to have been affected by the action of aqueous fluids that resulted in the formation of abundant oxides, Fe‐rich carbonates, including endmember ankerite, and the sulfide‐silicate‐phosphate scorzalite. We suggest that these materials formed via impact‐driven metamorphism. Mineralogic features indicative of impact metamorphism include (1) the presence of sulfide‐metal lodes; (2) the abundance of polymineralic opaque assemblages with mosaic‐like textures; and (3) the presence of suessite. Initial shock metamorphism probably resulted in replacement of nebular Fe‐Ni metal in chondrules and in matrix by Ni‐rich, Co‐rich Fe metal, Al‐Ti‐Cr‐rich alloys, and Fe sulfides, while subsequent hydrothermal alteration produced accessory oxides, phosphates, and Fe carbonates. An extensive network of sulfide‐metal veins permitted effective exchange of siderophile elements from pre‐existing metal nodules with adjacent chondrules and matrix, resulting in unusually high Fe contents in these objects.  相似文献   

20.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号