首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ü.D. Göker 《New Astronomy》2012,17(2):130-136
A Lagrangian Remap (LareXd) Code is employed to investigate the shock wave formation in the current sheet of a solar coronal magnetic loop and its effect on the magnetic reconnection. We constructed the slow shock structure in the presence of viscosity and heat conduction parallel and perpendicular to the magnetic field and pairs of slow shocks propagate away from the central current sheet, the so-called diffusion region. Significant jumps in plasma density, pressure, velocity and magnetic field occur across the main shock while the temperature appears in the foreshock. In the presence of dissipative effects, the distinct jumps disappear and the shock profiles show smooth transition between the downstream and the upstream regions while the plasma density and the pressure show very narrow and a sharp decrease with time. These results can be applied to the heating of the solar corona, the structure of the magnetic reconnection and the solar wind.  相似文献   

2.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

3.
We consider the flare oscillations from the active red dwarf AT Mic detected with the XMM-Newton space observatory in the soft X-ray energy range (0.2–12 keV). Following Mitra-Kraev et al. (2005a), we associate the observed oscillations with a period of ≈750 s with the excitation of a standing slow magnetoacoustic (SMA) wave in a coronal loop. The damping of flare loop SMA oscillations is shown to be governed by electron thermal conduction. We have estimated the plasma density (≈3 × 1010 cm?3) and the minimum magnetic field strength (≈100 G) in the region of flare energy release. The adopted model is consistent with the results of a spectral analysis of the soft X-ray emission. The piston mechanism is assumed to be responsible for the excitation of loop SMA oscillations.  相似文献   

4.
Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool H flare loops with predicted densities of 1013 cm–3, and a small gap of 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.  相似文献   

5.
Pulsations of mm-wave emission with a period of about 5 s, which occurred during the impulsive phase of the flare of June 22, 1989, are investigated. It has been shown that these pulsations can be driven by Alfvénic oscillations of a flare loop excited due to upward motion of the chromospheric evaporated plasma. A method is proposed to determine the density and temperature of the evaporated plasma as well as the flare loop magnetic field and loop length in terms of Alfvénic oscillations of the loop and bremsstrahlung mechanism of mm-wave emission. The estimation of evaporated plasma energy has shown that for the flare of June 22, 1989 the energy content in electron beams is insufficient for chromospheric plasma evaporation. It is not excluded that the main energy release process occurs in the chromosphere.  相似文献   

6.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

7.
Results from the analysis of flares observed by the Solar Maximum Mission (SMM) and a recent rocket experiment are discussed. We find evidence for primary energy release in the corona through the interaction of magnetic structures, particle and plasma transport into more than a single magnetic structure at the time of a flare and a complex and changing magnetic topology during the course of a flare. The rocket data are examined for constraints on flare cooling, within the context of simple loop models. These results form a basis for comments on the limitations of simple loop models for flares.  相似文献   

8.
We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 February 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons for only a brief, early phase. Throughout the main period of energy release there is a super-hot (T?30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model, whereby Alfvén-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks: heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely expanding or conductively cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 February 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature (T?20 MK) post-flare loops. The number, size, and early appearance of these loops in TRACE’s 171 Å band are consistent with the type of transient reconnection assumed in the model.  相似文献   

9.
本文在非线性无力磁场的等效边界积分方程的基础上,计算了NOAA8100 活动区在1997 年11 月4 日的磁场结构。发现该磁场由一个浮现磁环、一个具有微分剪切的多磁环系统、和大尺度或开放磁力线等三部分组成。2B/X2 耀斑是由于浮现磁环与具有微分剪切的多磁环系统和大尺度或开放磁力线之间的相互作用而触发的,发生在浮现磁通量区域附近,并位于不同走向的多个磁环的公共足点处。Hβ双带出现在浮现磁通量区域附近,在浮现磁环的足点处。其中位于开放磁力线附近的亮带暗一些。然而在2B/X2 高能耀斑之后,仍然存在着强剪切状态。表明该活动区松弛到了一个低能态但不是最小能量状态。  相似文献   

10.
For the November 5, 1980 flare it is investigated how the plasma in a large flaring loop responds to the injection of energetic electrons. Observations are compared with the results of a one-dimensional numerical simulation. For the simulation it is assumed that at the time the injection is started, the plasma is in an equilibrium state with a constant pressure along the loop and conductive heating compensated by radiative losses. Especially important for the evolution of the impulsively heated plasma is the penetration depth of the fast electrons compared to the depth of the transition layer. Both parameters are known from the observations. The injected energy is 2.6 × 1011 ergs cm ?2 in 30 s (as derived from the hard X-ray observations) and computations show that the high temperature plasma of the loop responds to it with upward motions of about 50 km s?1, i.e. with velocities much smaller than the ion sound speed (≈ 500km s?1). The heating of the plasma due to the absorption of beam energy can be understood using a constant density approximation. After the heating phase the plasma returns in about 5 min to its initial state by conductive cooling. The downward conducted energy is radiated away in the transition zone. The numerical simulation shows that impulsive heating by non-thermal electrons only does not explain the observed large increase in the density of the loop during the flare. It is therefore required that continuous energy and/or mass input occur after the impulsive phase.  相似文献   

11.
The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated.The velocity of CMEs increases with plasma temperature(R=0.82)and photon index below the break energy(R=0.60)of X-ray flares.The heating of the coronal plasma appears to be significant with respect to the kinetics of a CME from the reconnection region where the flare also occurs.We propose that the initiation and velocity of CMEs perhaps depend upon the dominant process of conversion of the magnetic field energy of the active region to heating/accelerating the coronal plasma in the reconnected loops.Results show that a flare and the associated CME are two components of one energy release system,perhaps,magnetic field free energy.  相似文献   

12.
Heating of the deep chromosphere by a vertically descending beam of non-thermal electrons with power-law energy spectrum, in flares, is analysed. In lower regions of the flare, radiative losses can balance the energy input and the flare structure is described in terms of instantaneous quasi-steady temperature/depth profiles. Motion of the optical flare material is at constant pressure and is constrained to be purely vertical by a vertical magnetic field. The ionisation of hydrogen is determined by the same non-LTE processes as in the quiet chromosphere. Temperature profiles are obtained for a wide range of electron beam intensities and spectral indices and are discussed in terms of optical flare observations. Due to the steepness of the electron spectra, typical densities in the optical flare vary only over a narrow range, despite the diversity of beam intensities, in agreement with observation.Above a certain region, the flare material cannot attain a radiatively steady state against the electron input but evaluation of the level at which this occurs leads to an estimate of the mass of material involved in the high temperature flare plasma in this model. Results, which are again insensitive to the electron beam parameters, are found to be in satisfactory agreement with observations of the mass of flare ejecta and of soft X-ray flare emission measures.  相似文献   

13.
14.
On July 5, 1980 the Hard X-Ray Imaging Spectrometer on board the Solar Maximum Mission observed a complex flare event starting at 22 : 32 UT from AR 2559 (Hale 16955), then at N 28 W 29, which developed finally into a 2-ribbon flare. In this paper we compare the X-ray images with Hα photographs taken at the Big Bear Solar Observatory and identify the site of the most energetic flare phenomena. During the early phases of the event the hard X-rays (>16 keV) came from a compact source located near one of the two bright Hα kernels; we believe the latter are at the footpoints of a compact magnetic loop. The kernel identified with the X-ray source is immediately adjacent to one of the principal sunspots and in fact appears to ‘rotate’ around the sunspot over 90° in the early phase of the flare. Two intense X-ray bursts occur at the site of the rotating kernel, and following each burst the loop fills with hot, X-ray emitting plasma. If the first burst is interpreted as bremsstrahlung from a beam of electrons impinging on a collisionally dominated medium, the energy in such electrons, >16 keV, is ~ 5 × 1030 erg. The altitude of the looptop is 7–10 × 103 km. The temperature structure of the flare is extremely non-homogeneous, and the highest temperatures are found in the top of the loop. A few minutes after the hard X-ray bursts the configuration of the region changes; some of the flare energy is transferred along a system of larger loops that now become the defining structure for a 2-ribbon flare, which is how the flare develops as seen in Hα. In the late, cooling phase of the flare 15 min after maximum, we find a significant component of the plasma at temperatures between 25 and 30 × 106 K.  相似文献   

15.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

16.
T. Takakura 《Solar physics》1991,136(2):303-316
Numerical simulation is made of the transient heat conduction during local heating in a model coronal magnetic loop with an axial electric current. It is assumed that a segment near the top of the normal coronal loop is heated to above 107 K by a sufficiently small heat input as compared with the total flare energy. A hump appears in the velocity distribution of electrons moving down the temperature gradient with speeds slightly below the thermal one. Consequently, electron plasma waves are excited. The high intensity of the waves persists in the upper region of the loop for more than a second until the termination of the simulation. The energy density of the plasma waves normalized with respect to thermal density is 10–3.5 at maximum. A theoretical estimate gives an anomalous resistivity 5 orders of magnitude greater than an initial value. Based on the above result, we propose a model for impulsive loop flares.  相似文献   

17.
    
We compare large-scale filtergrams of a hitherto neglected class 1B flare with previously published vector magnetograms and maps of photospheric longitudinal electric current density (Hagyard et al., 1985). The vector magnetic fields were mapped simultaneously with the eruption of this flare. We find a coincidence, to within the ±2 registration accuracy of the data, between the flare kernels and the locations of maximum shear and of peak values in the longitudinal electric current density. The kernels brighten in a way which implies that the preflare heating and the main release of flare energy are spatially coincident within the limits of resolution (2). A pronounced magnetic shear exists in the vertical direction at the location of the strongest flare kernels. We provide evidence that the electric currents could be maintained by the energy stored in the sheared transverse magnetic field and that the amount of energy released is proportional to the amount stored. These circumstances are consistent with theories in which flares are triggered by plasma instabilities due to surplus electric currents.  相似文献   

18.
In the present paper self-similar solutions have been investigated for the propagation of piston driven, radiative gas-dynamic shocks into an inhomogeneous ideal gas permeated by a current free azimuthal magnetic field for spherical symmetry. The effects of radiation flux and magnetic field together have been seen in the region of interest on the other flow variables. The total energy of the flow between the piston and the shock is taken to be dependent on the shock radius obeying a power law. The radiative pressure and energy have been neglected. This problem is more general than the others done so far. The word piston implies some means to drive plasma radially onwards.  相似文献   

19.
We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionised gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.  相似文献   

20.
The analysis of the high temperature plasma in Fe xxiii–xxiv in the 15 June 1973 flare is presented. The observations were obtained with the NRLXUV spectroheliograph on Skylab. The results are: (1) There was preheating of the active region in which the flare occurred. In particular, a large loop in the vicinity of the flaring region showed enhanced brightness for many hours before the flare. The loop disappeared when the flare occurred, and returned in the postflare phase, as if the energy flux which had been heating the large loop was blocked during the flare and restored after the flare was gone. The large magnetic fields did not change significantly. (2) The flare occurred in low-lying loop or loops. The spatial distribution of flare emission shows that there was a temperature gradient along the loop. (3) The high temperature plasma emitting Fe xxiii and xxiv had an initial upward motion with a velocity of about 80 km s–1. (4) There was large turbulent mass motion in the high temperature plasma with a random velocity of 100 to 160 km s–1. (5) The peak temperature of the hot plasma, determined from the Fe xxiii and xxiv intensity ratio, was 14 × 106 K. It decreased slightly and then, for a period of 4 min, remained at 12.6 × 106 K before dropping sharply to below 10 × 106 K. The density of the central core of the hot plasma, determined from absolute intensity of Fe xxiv 255 Å line, was of the order of 1011 cm–3.The persistence of the high level of turbulence and of the high temperature plateau in the decaying phase of the flare indicates the presence of secondary energy release. From the energy balance equation the required energy source is calculated to be about 3 to 7 ergs cm–3 s–1.Ball Brothers Research Corporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号