首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
陈仁旭  郑永飞  龚冰 《岩石学报》2011,27(2):451-468
对超高压变质岩中含水矿物和名义上无水矿物的地球化学研究,极大地深化了我们对大陆碰撞带地壳俯冲和折返过程中流体体制的认识。就流体体制和化学地球动力学来说,有关研究在大别-苏鲁造山带进行的最为详细,因此已经成为研究大陆俯冲带变质的典型地区。本文以大别-苏鲁造山带为对象,从矿物水含量的角度,结合稳定同位素论述了大陆俯冲带流体活动。超高压变质岩中名义上无水矿物含有大量的水,以结构羟基和分子水形式存在。名义上无水矿物中结构羟基和分子水出溶与含水矿物分解共同构成了折返过程中退变质流体的主要来源。名义上无水矿物所释放的水以富集轻的氢氧同位素为特征,而含水矿物分解则提供了富集D的流体来源。折返过程中,名义上无水矿物降压脱水存在亏损D的分子水的优先丢失和不同形式水之间的相互转化。不同岩性的水含量差异导致了它们在折返过程中不同的流体活动行为。大陆板块俯冲和折返过程中,在不同矿物、不同岩性以及板片不同部位之间存在水的再分配;板片的一部分作为富水流体的源,而另一部分可能作为汇。  相似文献   

2.
3.
The Jiangzhuang ultrahigh‐pressure (UHP) metamorphic peridotite from south Sulu, eastern China occurs as a layer within gneiss with eclogite blocks, and consists of coarse‐grained garnet porphyroblasts and a fine‐grained matrix assemblage of garnet + forsterite + enstatite + diopside ± phlogopite ± Ti‐clinohumite ± magnesite. Both types of garnet are characterized by high MgO content and depletion of light rare earth element (LREE) and enrichment of heavy rare earth element, but the matrix garnet has lower MgO, TiO2 and higher Cr2O3 and REE contents. Diopside displays LREE enrichment, and has low but variable large‐ion lithophile element (LILE) contents. Phlogopite is a major carrier of LILE. Ti‐clinohumite contains high Nb, Ta, Cr, Ni, V and Co contents. The P–T conditions of 4.5–6.0 GPa and 850–950 °C were estimated for matrix mineral assemblages. Most peridotites are depleted in Al2O3, CaO and TiO2, and enriched in SiO2, K2O, REE and LILE. In contrast to phlogopite‐free peridotites, the phlogopite‐bearing peridotites have higher K2O, Zr, REE and LILE contents. Zircon occurs only in the phlogopite‐bearing peridotites, shows no zoning, with low REE contents and Th/U ratios, and yields tight UPb ages of 225–220 Ma, indicating the peridotites experienced consistent Triassic UHP metamorphism with subducted supercrustal rocks. These data demonstrate that the Jiangzhuang peridotites were derived from the depleted mantle wedge of the North China Craton, and experienced various degrees of metasomatism. The phlogopite‐free peridotites may have been subjected to an early cryptic metasomatism at UHP conditions of the mantle wedge, whereas the phlogopite‐bearing peridotites were subjected to a subsequent strong metasomatism, characterized by distinctly enrichment in LILE, LREE, Zr and K as well as the growth of zircon and volatile‐bearing minerals at UHP subduction conditions. The related metasomatism may have resulted from the filtration of fluids sourced mainly from deeply subducted supracrustal rocks.  相似文献   

4.
苏鲁造山带超高压变质岩岩石学、氧同位素、流体包裹体和名义上无水矿物的研究表明,流体-岩石相互作用在大陆地壳的俯冲与折返过程中起到多重的重要作用,并形成了复杂的流体演化过程:(1)大陆表壳岩通过与高纬度大气降水的交换作用被广泛水化,并获得了异常低的氧同位素成分;(2)在水化陆壳物质的俯冲过程中发生了一系列的进变质脱水反应,所释放的流体主要结合进了高压、超高压含水矿物和名义上无水超高压矿物;(3)在超高压变质过程中,以水为主的变质流体通过选择性的吸收使其盐度逐渐升高,并在峰期出现高密度、高盐度的H2O或CO2-H2O流体。有机质的分解反应在局部形成了以CO2、N2、CH4或它们的混合物为主要成分的变质流体;(4)名义上无水超高压矿物的结构水出溶是早期退变质流体的主要来源,并在局部富集形成了高压变质脉体;(5)透入性的中、低盐度水流体活动使超高压变质岩通过一系列的水化反应转变成角闪岩相变质岩;(6)沿韧性剪切带和脆性破碎带的强烈水流体活动为绿片岩相退变质作用和低压石英脉的形成提供了变质流体;(7)可变盐度的H2O或CO2-H2O流体是整个超高压变质岩形成与折返过程中的主要流体,但局部的流体.岩石相互作用形成了非极性的变质流体。  相似文献   

5.
We present an integrated study of geochemistry, petrofabrics and seismic properties of strongly sheared eclogites from the Chinese Continental Scientific Drilling (CCSD) project in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. First, geochemical data characterize diverse protoliths of the studied eclogites. The positive Eu- and Sr-anomalies, negative Nb anomaly and flat portion of heavy rare earth elements in coarse-grained rutile eclogites (samples B270 and B295) suggest a cumulate origin in the continental crust, whereas the negative Nb anomaly and enrichment of light rare earth elements in retrograde eclogites (samples B504, B15 and B19) imply an origin of continental basalts or island arc basalts. Second, P-wave velocities (Vp) of three typical eclogite samples were measured under confining pressures up to 500 MPa and temperatures to 700 °C. At 500 MPa and room temperature, the mean Vp reaches 8.50-8.53 km/s in samples B270 and B295 but drops to 7.86 km/s in sample B504, and the P-wave anisotropy changes from 1.7-2.7% to 5.5%, respectively. The pressure and temperature derivatives of Vp are larger in the retrograde eclogite than in fresh ones. Third, the electron backscatter diffraction (EBSD) measurements of the eclogites reveal random crystal preferred orientation (CPO) of garnet and pronounced CPO of omphacite, which is characterized by a strong concentration of [001]-axes sub-parallel to the lineation and of (010)-poles perpendicular to the foliation. The asymmetric CPO of omphacite in sample B270 recorded a top-to-the-south shear event during subduction of the Yangtze plate. The calculated fastest Vp is generally sub-parallel to the lineation, but a different deformation environment during exhumation could form second-order variations in omphacite CPO and affect the Vp distribution in eclogites (e.g., the fastest Vp is at ~ 35° from the foliation in sample B295). Comparison between measured and calculated seismic properties indicates that the CPO of omphacite controls the seismic anisotropy of eclogites at high pressure, and compositional layering and retrograde minerals will increase the anisotropy. Calculated P-wave velocities agree well with velocities measured at 500 MPa and room temperature for fresh eclogites, but much higher than those of retrograde eclogite. As a case study, the laboratory-derived Vp-P and Vp-T relationships were used to estimate P-wave velocities of eclogites and peridotites beneath the Western Superior Province, Canada. The results indicate that besides the fabric-induced anisotropy, the direction dependence of pressure and temperature derivatives of Vp can significantly increase seismic anisotropy of eclogites with depth, which results in eclogites being an important candidate for the seismic anisotropy in the upper mantle. Due to their very high density and velocity, garnet-rich eclogites within peridotite could be detected in seismic reflections in subduction zones.  相似文献   

6.
Mineralogy and Petrology - Vulcano is part of the Aeolian volcanic arc in the southern Tyrrhenian Sea. Its products were emplaced through multiple episodes of edifice building and collapse since...  相似文献   

7.
The 5158-m-deep main borehole of the Chinese Continental Scientific Drilling Project (CCSD-MH) penetrated granitic gneisses, paragneisses, eclogites, retrograde eclogites, amphibolites and ultramafic rocks in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. The CCSD-MH consists of four petro-structural units separated by three SE-dipping ductile shear zones DFa (835-1280 m), DFb (2010-2280 m) and DFc (2920-3225 m), which are correspondent with the regional shear zones in the northern Sulu UHP supracrustal zone. Using the electron backscatter diffraction (EBSD) technique, we investigated the lattice-preferred orientations (LPOs) of omphacite, diopside and quartz in core samples from the CCSD-MH. Omphacite from eclogites and diopside from garnet pyroxenites display very strong LPOs, which are characterized by the maximum concentration of [001]-axes parallel to the lineation and (010)-poles normal to the foliation. Quartz in para- and granitic mylonites/gneisses from the shear zones DFa, DFb and DFc developed multiple slip systems. 40Ar/39Ar dating of biotite in para- and granitic gneisses from the CCSD-MH yields 223-202 Ma, which constrains the formation ages of the quartz high-temperature prism slip systems {m}<a> and {m}[c]. The asymmetric LPOs of omphacite, diopside, olivine and quartz with respect to the structural frame reveal three deformation phases in the Sulu terrane. In the Middle Triassic, the northward subduction of the Yangtze plate to depths > 100 km produced a top-to-the-south shear sense in LPOs of omphacite, diopside and olivine, and a nearly N-S-striking foliation and a subhorizontal N-S-trending lineation in eclogites and ultramafic rocks. In the Late Triassic, the UHP rocks were exhumed to the lower crust and quartz developed high-temperature slip systems with a top-to-the-NW shear sense, which is consistent with the regional SE-dipping foliation and SE-plunging lineation in the ductile shear zones. In the Cretaceous the UHP rocks were exhumed to the middle crust when the migmatization and granitic intrusion formed a NE-striking antiform structure. As a result, the activation of quartz low-temperature basal slip (0001)<a> is characterized by a top-to-the-SE shear sense in the south, but a top-to-the-NW shear sense in the north.  相似文献   

8.
Leucocratic granites of the Proterozoic Kaoko Belt, northern Namibia, now preserved as meta-granites, define a rock suite that is distinct from the surrounding granitoids based on their chemical and isotopic characteristics. Least evolved members of this ~1.5–1.6-Ga-old leucogranite suite can be distinguished from ordinary calc-alkaline granites that occur elsewhere in the Kaoko Belt by higher abundances of Zr, Y, and REE, more radiogenic initial εNd values and unradiogenic initial 87Sr/86Sr. The leucogranites have high calculated zircon saturation temperatures (mostly > 920°C for least fractionated samples), suggesting that they represent high-temperature melts originating from deep crustal levels. Isotope data (i.e., εNdi: +2.3 to –4.2) demonstrate that the granites formed from different sources and differentiated by a variety of processes including partial melting of mantle-derived meta-igneous rocks followed by crystal fractionation and interaction with older crustal material. Most fractionation-corrected Nd model ages (TDM) are between 1.7 and 1.8 Ga and only slightly older than the inferred intrusion age of ca. 1.6 Ga, indicating that the precursor rocks must have been dominated by juvenile material. Epsilon Hf values of zircon separated from two granite samples are positive (+11 and +13), and Hf model ages (1.5 and 1.6 Ga) are similar to the U–Pb zircon ages, again supporting the dominance of juvenile material. In contrast, the Hf model ages of the respective whole rock samples are 2.3 and 2.4 Ga, demonstrating the involvement of older material in the generation of the granites. The last major tectonothermal event in the Kaoko Belt in the Proterozoic occurred at ca. 2.0 Ga and led to reworking of mostly 2.6-Ga-old rocks. However, the presence of 1.6 Ga “post-collisional” granites reflects addition of some juvenile mantle-derived material after the last major tectonic event. The results suggest that similar A-type leucogranites are potentially more abundant in crustal terranes but are masked by AFC processes. In the case of the Kaoko Belt, it is suggested that this rock suite indicates a yet unidentified period of mantle-derived crustal growth in the Proterozoic of South Western Africa.  相似文献   

9.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

10.
The problem of mantle metasomatism vs. crustal contamination in the genesis of arc magmas with different potassium contents has been investigated using new trace element and Sr–Nd–Pb isotopic data on the island of Vulcano, Aeolian arc. The analysed rocks range in age from 120 ka to the present day, and cover a compositional range from basalt to rhyolite of the high-K calc-alkaline (HKCA) to shoshonitic (SHO) and potassic (KS) series. Older Vulcano products (>30 ka) consist of HKCA–SHO rocks with SiO2=48–56%. They show lower contents of K2O, Rb and of several other incompatible trace element abundances and ratios than younger rocks with comparable degree of evolution. 87Sr/86Sr ranges from 0.70417 to 0.70504 and increases with decreasing MgO and compatible element contents. 206Pb/204Pb ratios display significant variations (19.31 to 19.76) and are positively correlated with MgO, 143Nd/144Nd (0.512532–0.512768), 207Pb/204Pb (15.66–15.71) and 208Pb/204Pb (39.21–39.49). Overall, geochemical and isotopic data suggest that the evolution of the older series was dominated by assimilation–fractional crystallisation (AFC) with an important role for continuous mixing with mafic liquids. Magmas erupted within the last 30 ka consist mostly of SHO and KS intermediate and acid rocks, with minor mafic products. Except for a few acid rocks, they display moderate isotopic variations (e.g. 87Sr/86Sr=0.70457–0.70484; 206Pb/204Pb=19.28–19.55, but 207Pb/204Pb=15.66–15.82), which suggest an evolution by fractional crystallisation, or in some cases by mixing, with little interaction with crustal material. The higher Sr isotopic ratios (87Sr/86Sr=0.70494–0.70587) of a few, low-volume, intermediate to acid rocks support differentiation by AFC at shallow depths for some magma batches. New radiogenic isotope data on the Aeolian islands of Alicudi and Stromboli, as well as new data for lamproites from central Italy, are also reported in order to discuss along-arc compositional variations and to evaluate the role of mantle metasomatism. Geochemical and petrological data demonstrate that the younger K-rich mafic magmas from Vulcano cannot be related to the older HKCA and SHO ones by intra-crustal evolutionary processes and point to a derivation from different mantle sources. The data from Alicudi and Stromboli suggest that, even though interaction between magma and wall rocks of the Calabrian basement during shallow level magma evolution was an important process locally, a similar interpretation can be extended to the entire Aeolian arc. Received: 27 September 1999 / Accepted: 24 May 2000  相似文献   

11.
Numerous minette dykes intersect the Precambrian crystallinebasement of Schirmacher Oasis, East Antarctica. This study presentsnew Sr, Nd, Pb and O isotope data for 11 minette samples fromfour different dykes. The samples are characterized by relativelyhigh 87Sr/86Sr (0·7077–0·7134), 207Pb/204Pb(15·45–15·55) and 208Pb/204Pb (37·8–39·8),combined with low 143Nd/144Nd (  相似文献   

12.
中国大陆科学钻探工程主孔位于苏鲁超高压变质带南部的东海地区。该钻孔0~2050m井段钻遇的岩石主要是榴辉岩、正片麻岩、副片麻岩和石榴石橄榄岩。激光原位氧同位素研究表明,变质矿物的δ^18O值具有显著的不均一性,从-6.8‰变化至 7.5‰。空间上看,从近地表至1000m深度δ^18O值逐渐降低,向更深处又逐渐升高。位于钻孔1100~1600m深度之间的正片麻岩是新元古代花岗岩体,该岩体的侵入为表壳岩与低氧同位素大气降水之间的水-岩交换作用提供了热源,并导致岩体附近的围岩发生了最强烈的水-岩蚀变,因此具有极低的氧同位素值。研究还显示,在厘米尺度内,大多数超高压变质矿物之间具有平衡的氧同位素组成,所获得的超高压峰期变质温度为700~882℃,与矿物之间的主元素交换温度计获得的结果基本相同。超高压变形与变质分异、高压退变质作用及其伴生的局部流体活动可能是造成超高压变质矿物氧同位素不平衡的主要原因。研究进一步证明,超高压变质岩原岩的异常低氧同位素特征在大陆板块的俯冲与折返过程中得以较好保存,在超高压变质前期、同期和后期均没有大规模的透入性流体活动发生。与围岩呈构造接触关系的石榴石橄榄岩具有正常地幔岩的氧同位素成分,它很可能是构造侵位到俯冲带之间的地幔楔状体,并不具有与表壳岩相同的前超高压变质历史。  相似文献   

13.
The sparkling waters from the area of Kyselka near Karlovy Vary at the western slope of the Doupovske hory, Bohemia (Czech Republic), and CO2-poor waters from two underground boreholes at Jachymov, Krusne hory, Bohemia, have been studied with the aim of characterizing the distribution of rare earth elements, yttrium, and H, O, C, Sr, Nd, Pb isotopes during the low-temperature alteration processes of the host rocks. Additionally, leaching experiments were performed at pH 3 on the granitic and basaltic host rocks from Kyselka and the granite of Jachymov. All REE patterns of the granite- and the basalt-derived waters from the Kyselka area are different from those of their source rocks and the leachates of the latter. This elucidates the inhomogeneous distribution of REE and Y among the solid phases in the altered magmatic rocks. The Eu and Ce anomalies in granite-derived waters are inherited, the Y anomaly is achieved by fluid migration. Yttrium is always preferentially leached by mineral waters, whereas Y/Ho ratios of rocks and their leachates are very similar. The REE abundances in waters from the wells in Jachymov are derived from rocks intensely leached and depleted in easily soluble REE-bearing minerals, whereas the granites and basalts from Kyselka still contain soluble, REE-bearing minerals. A comparison of REE/Ca patterns of the experimental leachates with those of the mineral waters elucidate the high retention of REE in rocks during water–rock interaction. In strongly altered rocks Sr isotope ratios of mineral waters and rocks differ widely, whereas the corresponding Nd isotope ratios are very similar. 207Pb/208Pb, 206Pb/208Pb and 206Pb/207Pb ratios in mineral waters are independent from U/Th ratios in the rocks. 206Pb/208Pb and 206Pb/207Pb are lower in mineral waters than in their source rocks and their leachates, which indicates that Pb is primarily derived from solid phases that do not contain significant contents of leachable U and Th. Thus, mineral waters, although CO2 rich, only interact with surface films on minerals and not with the bulk of the minerals as in the leaching experiments.Calculation of mixing ratios of waters from the granitic and basaltic sources of the waters from the Kyselka area yield about 40% of water from the underlying granite in water recovered from the basalt, whereas the granite-derived water is mixed with only about 5% of the water from the basalt.  相似文献   

14.
西秦岭新生代钾霞橄黄长岩和碳酸岩具有强烈富集LILE和LREE的特征,经球粒陨石标准化的REE分配模式与OIB十分相似。钾霞橄黄长岩和碳酸岩的(^87Sr/^86Sr)i分别在0.70381~0.70940和0.70529~0.71332之间,^144Nd/^143Nd分别介于0.512404~0.512924和0.512210~0.512928之间。经计算获得多数样品的εNd落在-3.4~5.58范围内,与OIB的εNd值一致。这两类岩石的^208Pb/^204Pb、^207Pb/^204Pb和^206Pb/^204Pb分别为37.613~39.330和38.060~38.995,15.842~16.441和15.545~15.677,以及18.418~22.4和18.149~19.062。采用主量元素MgO—Ni和ε(Nd)-(^87Sr/^86Sr)相关图,以及高场强元素比值Zr/Nb—La/Nb和Ba/La—Ba/Nb相关图以及。^208Pb/^204Pb-^206Pb/^204Pb,^207Pb/^204Pb-^206Pb/^204Pb相关图,一致证明本区火山岩具有与洋岛玄武岩(OIB)相似的地球化学特征,且源区具有EM1和EM11富集端员的混合。但是本区火山岩高的Nb/Ta比和强烈富集Nb等高场强元素,以及较高的^144Nd/^143Nd值,表明该火山岩地球化学具有某种特殊性。结合对西秦岭深部地球物理资料及地质构造背景和演化历史的分析,提出西秦岭新生代钾霞橄黄长岩和碳酸岩的成因与地幔柱的活动有关,源区包含了EM1和EM11富集端员的组分。EM1和EM11富集端员的成因与地幔柱/软流圈流体的作用有关,也与大洋板片的脱水作用和大陆岩石圈的拆层作用有关。该区特殊的大地构造背景和演化历史为上述几种作用的联合提供了可能。它不仅较好地解释了该火山岩地球化学方面的特殊性,及钾霞橄黄长岩与碳酸岩共生的事实,同时也证明新生代火山岩的成因是地幔柱.岩石圈相互作用的产物。  相似文献   

15.
Fluid plays a key role in metamorphism and magmatism in subduction zones. Veins in high‐pressure (HP) to ultrahigh‐pressure (UHP) rocks are the products of fluid‐rock interaction, and can thus provide important constraints on fluid processes in subduction zones. This contribution is an integrated study of zircon U–Pb and O–Hf, as well as whole‐rock Nd–Sr isotopic compositions for a quartz vein, a complex vein, and their host eclogite in the Sulu UHP terrane to decipher the timing and source of fluid flow under HP‐UHP metamorphic conditions. The inherited magmatic zircon cores from the host eclogite constrain the protolith age at c. 750 Ma. Their variable εHf(t) values from ?1.11 to 2.54 and low δ18O values of 0.32–3.40‰ reflect a protolith that formed in a rift setting due to the breakup of the supercontinent Rodinia. The hydrothermal zircon from the quartz and the complex veins shows euhedral shapes, relatively flat HREE pattern, slight or no negative Eu anomaly, low 176Lu/177Hf ratios, and low formation temperatures of 660–690 °C, indicating they precipitated from fluids under HP eclogite facies conditions. This zircon yielded similar U–Pb ages of 217 ± 2 and 213 ± 3 Ma within analytical uncertainty, recording the timing of fluid flow during the exhumation of the UHP rock. It is inferred that the fluids might be of internal origin based on the homogeneity of δ18O values of the hydrothermal zircon from the quartz (?2.41 ± 0.13‰) and complex veins (?2.35 ± 0.12‰), and the metamorphic grown zircon of the host eclogite (?2.23 ± 0.16‰). The similar εNd(t) values of the whole rocks also support such a point. Zircon O and whole‐rock Nd isotopic compositions are therefore useful to identify the source of fluid, for they are major and trace components in minerals involved in metamorphic reactions during HP‐UHP conditions. On the other hand, the hydrothermal zircon from the veins and the metamorphic zircon from the host eclogite exhibit variable εHf(t) values. Model calculation suggests that the Hf was derived from the breakdown of major rock‐forming minerals and recycling of the inherited magmatic zircon. The variable whole‐rock initial 87Sr/86Sr ratios might be caused by subsequent retrograde metamorphism after the formation of the veins.  相似文献   

16.
Niobium and Ta concentrations in ultrahigh‐pressure (UHP) eclogites and rutile from these eclogites and associated high pressure (HP) veins were used to study the behaviour of Nb–Ta during dehydration and fluid‐rock interaction. Samples were collected through a ~2 km profile at the Bixiling complex in the Dabie orogenic belt, Central‐Eastern China. All but one eclogite away from veins (EAVs) display nearly constant Nb/Ta ratios ranging from 16.1 to 19.2, with an average of 16.9 ± 0.8 (2 SE), similar to that of their gabbroic protolith from the Yangtze Block. Nb/Ta ratios of rutile from the EAVs range from 12.7 to 25.3 among different individual grains, with the average values close to those of the corresponding bulk rocks. These observations show that Nb and Ta were not significantly fractionated by prograde metamorphism up to eclogite facies when no significant fluid‐rock interaction occurs. In contrast, Nb/Ta ratios of rutile from eclogites close to veins (ECVs) are highly variable from 17.8 to 49.8, which are systematically higher (by up to 17) than those of rutile from the veins. These observations demonstrate that Nb and Ta were mobilized and fractionated during localized fluid flow and intensive fluid‐rock interaction. This is strongly supported by Nb/Ta zoning patterns in single rutile grains revealed by in situ LA‐ICP‐MS analysis. Ratios of Nb/Ta in the ECV‐hosted rutile decrease gradually from cores towards rims, whereas those in the EAV‐hosted rutile are nearly invariable. Furthermore, the vein rutile shows Nb/Ta zoning patterns that are complementary to those in rutile from their immediate hosts (ECVs), suggesting an internal origin for the vein‐forming fluids. The Nb/Ta ratios of such fluids evolved from low values at the early stage of subduction to higher values at later supercritical conditions with increased temperature and pressure. Quantitative modelling was conducted to constrain the compositional evolution of metamorphic fluids during dehydration and fluid‐rock interaction focusing on Nb–Ta distribution. The modelling results based on our proposed multistage fluid phase evolution path can essentially reproduce the natural observations reported in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号