共查询到20条相似文献,搜索用时 0 毫秒
1.
Three-dimensional modeling of bank erosion and morphological changes in the Shishou bend of the middle Yangtze River 总被引:1,自引:0,他引:1
This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996–October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies. 相似文献
2.
Channel morphologic processes of a highly sinuous bend approaching neck cutoff by bank erosion in the middle Yangtze River 总被引:2,自引:0,他引:2
Zhiwei Li Hanyuan Yang Junqiang Xia Meirong Zhou Shanshan Deng Yingzhen Wang 《国际泥沙研究》2021,36(4):457-467
The distal reach of the Lower Jingjiang River(LJR)in the middle of the Yangtze River consists of five adjacent bends,among which the Qigongling Bend is a U-shaped meander with a mean sinuosity of 2.2 and the narrowest neck 525 m in width.This bend is slowly approaching neck cutoff owing to progressive bank erosion.An abnormal phenomenon has occurred in this bend since the Three Gorges Reservoir(TGR)began to operate in 2003 which is erosion in the inner bank zone and deposition in the outer bank zone.This problem has not been fully understood because of the interplay of changes in water-sediment,bank erosion,and artificial bank revetment.In this study,aerial and remote sensing images,hydrological data,channel topography,and an existing bank erosion model are used to reveal channel morphodynamics of this bend and the trend of the potential neck cutoff induced by bank erosion.The study results show that the clear water released from the TGR has provided by forcefully eroded the point bar of inner bank but failed to scour the outer bank due to the protection of bank revetment since the 1990 s.Thus far,the outer bank zone near the bend apex has increasingly widened in conjunction with the formation of 2 emerging sand bars.Consequently,the thalweg of the main channel has laterally shifted toward the inner bank by roughly 800 m.More severely,the rate of bank retreat on the upstream side of the bend neck was about 4.5 m/yr in 2010-2019,but the downstream side of this neck was experienced slight deposition.Bank erosion could be accelerated by progressively increasing erosion and eventually trigger the occurrence of neck cutoff in the next few decades,thereby significantly altering the quasi-equilibrium regime of channel morphodynamics in the LJR. 相似文献
3.
The main characteristics of river flow and grainsize in a bend of the sand bedded meandering river Dommel, The Netherlands, are presented. Measurements were carried out at a relatively low discharge in a sharply curved bend following a long straight reach. In the studied bend, secondary circulation is restricted to the thalweg area; only in the downstream part of the bend it exists over the entire cross-section. Therefore, on the entire pointbar platform, which comprises the larger part of the bend, the median sedimentation diameter of the bedload material is governed by the distribution of the longitudinal components of the bed shear stress only. 相似文献
4.
Simone Bizzi Marco Tangi Rafael J. P. Schmitt John Pitlick Hervé Piégay Andrea Francesco Castelletti 《地球表面变化过程与地形》2021,46(14):2946-2962
In this article we apply the CASCADE network-scale sediment connectivity model to the Vjosa River in Albania. The Vjosa is one of the last unimpaired braided rivers in Europe and, at the same time, a data scarce environment, which limits our ability to model how this pristine river might respond to future human disturbance. To initialize the model, we use remotely sensed data and modeled hydrology from a regional model. We perform a reach-by-reach optimization of surface grain size distribution (GSD) and bedload transport capacity to ensure equilibrium conditions throughout the network. In order to account for the various sources of uncertainty in the calculation of transport capacity, we performed a global sensitivity analysis. The modeled GSD distributions generated by the sensitivity analysis generally match the six GSDs measured at different locations within the network. The modeled bedload sediment fluxes increase systematically downstream, and annual fluxes at the outlet of the Vjosa are well within an order of magnitude of fluxes derived from previous estimates of the annual suspended sediment load. We then use the modeled sediment fluxes as input to a set of theoretically derived functions that successfully discriminate between multi-thread and single-thread channel patterns. This finding provides additional validation of the model results by showing a clear connection between modeled sediment concentrations and observed river morphology. Finally, we observe that a reduction in sediment flux of about 50% (e.g., due to dams) would likely cause existing braided reaches to shift toward single thread morphology. The proposed method is widely applicable and opens a new avenue for application of network-scale sediment models that aid in the exploration of river stability to changes in water and sediment fluxes. 相似文献
5.
Martin Dawson 《地球表面变化过程与地形》1988,13(7):599-618
The downstream diminution in sediment size in a braided reach of the proglacial Sunwapta River, Alberta, Canada, was examined statistically to identify the sources of the observed variation about an expected exponential relationship between clast size and distance. Major deviations from this hypothetical relationship, such as a relative increase in grainsize, may be attributed to the effects of tributary sediment inputs and downstream changes in channel behaviour, whilst local variation is associated with complex patterns of sediment deposition observed at a bar scale. A comparison of diminution coefficients, calculated for separate lithologies and for subreaches along the river, with those obtained from previous studies, is used as an indicator of river behaviour and sediment transport processes. It is shown that rates of diminution vary within the reach in response to differing rates of aggradation and to the backwater effects created by tributary alluvial fans. The relatively high values for the calculated diminution coefficients indicate that processes of differential transport are the main cause of the grain size decrease. 相似文献
6.
The present work explores relations between stream power,braiding intensities and bank erosion in certain stretches of the Brahmaputra River.In this paper,an objective approach is presented to enable quantitative assessment of spatio-temporal behaviour of channel braiding process of the Brahmaputra River by using the Plan Form Index and corresponding estimation of stream power to establish a behavioural pattern of variability of potential energy expenditure.The braiding index is compared for discrete years to understand the morphological behaviour.Subsequently,a real time estimation of stream power for certain stretches of Brahmaputra River is done in order to analyse its variability in braiding intensity and bank erosion.The paper presents the dynamic behaviour of the channel pattern of the Brahmaputra River System in Assam valley of India over a time span of 18 years.The procedure addresses the selection of input parameters from digital satellite images,comprising scenes for the years 1990,1997 and 2007 with specific dates,from Dhubri near Indo-Bangladesh Border to Upper Assam.Deployment of GIS technique has been made to extract the required parameters to derive Plan Form Indices for the entire study reach.Stream power estimation is done for corresponding latest floods and for corresponding dates of image scenes.The study indicated that due to consistent aggradation of riverbed inducing temporal declination of stream power,there is an occurrence of wide spread braiding.This in turn incurs substantial yearly land loss due to bank erosion,caused by flow concentrations due to temporal evolution of multiple channels in the Brahmaputra River. 相似文献
7.
Braiding has been widely studied in humid‐temperate climates though rarely in arid environments. Morpho‐texture of braided streams refers to the morphological‐textural organization in a braid‐cell (stream section including bars, anabranches and chutes) that may strongly relate to different processes and hydrological regimes. The objective of this study is to compare the morpho‐texture of braided streams governed by diverse flow recessions in different climates. Measurements were conducted in the wadis Ze'elim and Rahaf, southeast hyper‐arid Israel, in the Mediterranean Barranca‐de‐los‐Pinos, central Spain and in humid‐temperate braided systems, the La‐Bléone River, Haute‐Provence, France and in the Saisera and Cimoliana torrents, northeast Italy. Terrestrial laser scanning was used to produce point clouds and high resolution digital elevation models of the braid‐cells. Wet braid‐cells in humid‐temperate environments were surveyed by a Total Station. Roughness and the upper tail of grain size distributions were derived from the scanned point clouds or from Wolman sampling. We found that anabranches are commonly finer‐grained than the bars in dryland systems and in semi‐arid sandy braided systems, contrary to the humid‐temperate braided systems. In both climates, chutes are similar or coarser‐grained than the bars which they dissect, in accordance with their steeper gradients due to the considerable bar‐anabranch relief. The Saisera's morpho‐texture is similar to that of the dryland braided channels, despite the very humid‐temperate environment in which it is located, due to its short‐lived, ephemeral type hydrograph. Hydrograph shape, specifically the duration of flow recession, typical of a climate but not confined to it, determines the morpho‐texture of braided streams and the textural differentiation between a depositional bar and the adjacent anabranches. The morpho‐texture of chutes and bars results also from local erosional processes affected by local topography, i.e. ungraded longitudinal profiles, and is not solely determined by flow recession. This new morpho‐textural model enables identifying primary depositional and erosional braiding processes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Network concepts to describe channel importance and change in multichannel systems: test results for the Jamuna River,Bangladesh 总被引:1,自引:0,他引:1 下载免费PDF全文
Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi‐channel river pattern under natural discharge conditions. We developed a semi‐automatic method to derive a chain‐like directional network from images that represent the multi‐channel river and to connect individual network elements through time. The Jamuna River was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel, while upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low‐flow and high‐flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna River and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterization of river channel networks, highlighting properties and tendencies that have morphological significance. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Eliisa Lotsari David Wainwright Geoffrey D. Corner Petteri Alho Jukka Käyhkö 《水文研究》2014,28(4):2685-2716
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
The effects of aquatic macrophytes on flow and turbulence were studied in a tightly curving meander bend. Three field measurement campaigns were carried out within a one year period to capture effects of seasonal changes in macrophyte cover. They comprised three‐dimensional velocity measurements and mappings of vegetation cover and bathymetry. Flow accelerates and converges over the run into an axial pool in a jet‐like flow pattern bordered by outer and inner bank flow separation zones. The jet and widening of the cross‐section anticipate helical flow until the second half of the bend, where an asymmetric pool developed. Submerged vegetation at the riffles preserves the jet at much lower discharges during the summer period by concentrating high momentum fluid near the surface. Plants locally modify the velocity and stress patterns, reduce bed shear stresses, create zones of fine sediment accumulation and reinforce the bed and banks with roots and rhizomes. Plant patches colonising the banks and the point bar confine secondary flow cells laterally and affect shape and magnitude of the transverse flow profiles near their edges. The morphology of the bend was very stable over the observation period and neither bank erosion nor pool scouring occurred. However, fine sediments accumulate within vegetation patches and in the recirculation zones while the remaining open areas tend to erode slightly. With the decay of macrophytes in winter, sediment accumulations are mobilised again and the bathymetry levels, supporting cyclic models of morphologic change in vegetated bends. In the second part of the paper, semi‐empirical models for the three predominant flow types were tested and discussed; velocity and stress models of vegetated mixing layers and plane turbulent jets, and Rozovskii's model for the transverse flow in bends. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Water Resources - The article presents the history, mathematical background, and a review of the current state of numerical simulation of the interaction dynamics between river water and seawater... 相似文献
12.
1980s中期以来,黄河下游游荡段经常出现畸形河湾,分析其演变过程及特点对游荡段治理具有重要意义.本研究采用黄河下游游荡段的遥感影像和实测断面地形资料,描述了不同畸形河湾的演变过程并分析其河湾形态参数和断面形态的变化.研究表明,黄河下游游荡段的畸形河湾具有演变周期短、扭曲程度较大和易发生自然裁弯等特点.游荡段不同位置畸形河湾的演变特点不同:游荡段上段的畸形河湾演变缓慢,裁弯历时长;中段的畸形河湾演变速率较高,河湾扭曲程度大;下段的畸形河湾演变速率高,容易发生自然裁弯.河湾形态参数可反映畸形河湾的演变过程,其变化特点与畸形河湾的形成和裁弯过程相对应.在畸形河湾形成过程中,曲率半径和河湾间距减小,弯曲度、水流夹角和河湾振幅增大.游荡段3个畸形河湾弯曲度的最大值分别为1.20、2.10和1.61,反映了不同畸形河湾的扭曲程度.“Ω”形畸形河湾裁弯后的曲率半径、水流夹角、河湾振幅和河湾间距约为其演变过程中最值的605%、59%、27%和133%.“M”形畸形河湾裁弯后水流夹角、河湾振幅和河湾间距约为其最值的37%、83%和152%.在畸形河湾形成时期,伊洛河口断面位于畸形河湾凹岸侧的滩地以94 m/a的速率崩塌.裁弯后,河槽冲刷,两岸滩地崩退,河槽展宽速率为148 m/a.河床底部的冲刷从深泓点逐渐向两边发展. 相似文献
13.
River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various types of erosion processes taking place. Repeat field surveys of erosion pin plots were carried out during a 4‐year period and observations were supplemented by continuous monitoring of volumetric soil water content, soil temperature, ground water level and exposure of a PEEP sensor. Bank erosion rates (17·6–30·1 mm year?1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates exceeding 5 cm year?1 were mainly found at the lower parts of the bank and were associated with fluvial erosion. Negative erosion pin readings were widespread with a net advance of the bank during the monitoring period mainly attributed to subaerial processes and bank failure. It was found that dry periods characterized by low soil water content and freeze–thaw cycles during winter triggered bank failures. The great spatial variability, in combination with the temporal interaction of processes operating at different scales, requires new tools such as 3‐D topographical surveying to better capture bank erosion rates. An understanding of the processes governing bank erosion is required for riparian management using vegetational measures as root size and structure play different roles when it comes to controlling bank erosion processes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
15.
A series of different plutons from the Lhasa-Xigaze segment of the Gangdese (Transhimalaya) belt has been studied by high-resolution UPb analyses of zircon (using zircon fractions of 5–100 grains each, selected upon specific grain characteristics). For two diorites, located east of Xigaze (Dazhuka), the zircons yield concordant ages of 93.4 ± 1.0 and 94.2 ± 1.0 m.y., respectively. Also concordant ages of 41.1 ± 0.4 and 41.7 ± 0.4 m.y. have been obtained for two granodiorites, collected southwest of Lhasa (Qushui). The precision on the ages of two granites from the Xigaze and Lhasa area, is limited by two factors: the presence of inherited radiogenic lead and the occurrence of subsequent lead loss. However, some concordant zircons, detected in both granites, define approximate ages of about 67 and 53 m.y., respectively. The inherited lead components show that melting of Precambrian material was involved in magma genesis.The UPb ages substantiate a magmatic activity lasting from mid-Cretceous (Cenomanian) to Eocene (Lutetian) time. Such a period of plutonism at the southern margin of Eurasia, as well as the occurrence of magma generation from continental crust, suggest that the Gangdese range results from the subduction of Tethys oceanic lithosphere (Indian plate) underneath Eurasia (Eurasian plate). If this model is true, the collision of India with Eurasia (along the Lhasa-Xigaze sector) postdates the emplacement of the 41 m.y. old Gangdese granodiorites, i.e. the collision occurred after Lutetian time. 相似文献
16.
Water Resources - The balance structure of the pumpage sourses of riverside water-intakes, developing a subsoil aquifer or intermediate water that hydraulically interacts with it, can show the... 相似文献
17.
Jinxi Song Guotao Zhang Weize Wang Qi Liu Weiwei Jiang Weiqiang Guo Bin Tang Haifeng Bai Xinyi Dou 《水文研究》2017,31(19):3407-3420
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems. 相似文献
18.
This paper presents flume and field observations of a bank-confined braided river. Morphological features, including plan form configuration, channel width, and main channel migration, were examined by a series of experiments. Repeated measurements of channel morphology, provided a basis to estimate the relationship between noncumulative frequency of bars and bar area. Additional results from the Dajia River, located in Central Western Taiwan, were presented to provide a reference data set for comparing the laboratory and field data. The results indicate that the relationship between bar length and width can be predicted by a simple best-fit power function relating to self-similarity characteristics. The Hurst index by Walsh and Hicks (2002) provides acceptable predictions of the bar length and width observed in the experiments and confirmed by the field investigations. Eexperimental and field results both show that large river width yields a uniform distribution of bar areas with the similar discharge, leading to a large value of exponent (β) in the model. The river width is confirmed to be a critical parameter in the main channel shift. A small increase in channel width likely increased rapidly the shift cycle. 相似文献
19.
A useful tool for identifying the temporal and spatial ambient wellbore flow relationships near a dynamic river boundary is to monitor ambient vertical wellbore flow with an electromagnetic borehole flowmeter. This is important because the presence of the wellbore can result in significant mixing or exchange of groundwater vertically across the aquifer. Mixing or exchanging groundwater within the well-screen section can have significant impacts on the distribution of contaminants within the aquifer and adverse effects on the representativeness of groundwater samples collected from the monitoring well. Ambient monitoring data, collected from long screened wells at Hanford’s 300-Area Integrated Field Research Challenge site, located approximately 260 m from the Columbia River, demonstrate that vertical wellbore flow exhibits both a positive and inverse temporal relationship with periodic river-stage fluctuations that can change over short distances between wells. The spatial distribution of these vertical flows across the well field indicates two general regions of ambient wellbore flow behavior. The western region of the site is characterized by vertical flows that are positively related to river-stage fluctuations. In contrast, the eastern region of the site exhibits vertical flows that are inversely related to river-stage fluctuations. The cause of this opposite relationship is not completely understood; however, the positive relationships appear to be associated with high-energy Hanford formation flood deposits. These flood deposits have a well-defined northwest-southeast trend and are believed to coincide with a local paleochannel. The inverse relationships are attributed to an erosional, subsurface high in the Hanford/Ringold Formation contact between the site and the Columbia River. Under these complex hydrogeologic and hydrodynamic conditions, the behavior of ambient vertical wellbore flow in monitoring wells near a dynamic river boundary can have important implications for collecting groundwater-quality samples, for contributing to contaminant distribution within an aquifer system, and for implementing effective remediation strategies. 相似文献
20.
The wind-water two-phase erosion and sediment-producing processes in the middle Yellow River basin, China 总被引:8,自引:0,他引:8
XU Jiongxin 《中国科学D辑(英文版)》2000,43(2):176-186
Based on data from the middle Yellow River basin, a wind-water two-phase mechanism for erosion and sediment-producing processes
has been found. By using this mechanism, the extremely strong erosion and sediment yield in the study area can be better explained.
The operation of wind and water forces is different in different seasons within a year. During winter and spring, strong wind
blows large quantities of eolian sand to gullies and river channels, which are temporally stored there. During the next summer,
rainstorms cause runoff that contains much fine loessic material and acts as a powerful force to carry the previously prepared
coarse material. As a result, hyperconcentrated flows occur, resulting in high-intensity erosion and sediment yield. 相似文献