首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analysis of the distribution patterns of Pb isotope data from mineralised samples using the plumbotectonic model of Carr et al. (1995), which invokes mixing between crustal and mantle reservoirs, indicates systematic spatial patterns that reflect major metallogenic and tectonic boundaries in the Paleozoic Lachlan and Delamerian orogens in New South Wales and Victoria, Australia. This distribution pattern accurately maps the boundary between the Central and Eastern Lachlan subprovinces. The Central Lachlan Subprovince is characterised by Pb isotope characteristics with a strong crustal signature, whereas the Eastern Lachlan Subprovince is characterised by variable crustal and mantle signatures. The Macquarie Volcanic Province is dominated by Pb with a mantle signature: known porphyry Cu–Au and high sulphidation epithermal Au–Cu deposits in the province are associated with a zone characterised by the strongest mantle signatures. In contrast, granite-related Sn deposits in the Central Lachlan Subprovince are characterised by the strongest crustal signatures. The Pb isotope patterns are broadly similar to Nd isotope model age patterns derived from felsic magmatic rocks, although a lower density of Nd isotope data locations makes direct comparison difficult.The two reservoirs identified by Carr et al. (1995) do not appear to be isotopically linked: the crustal source was not formed via extraction from the mantle source. Rather, the two reservoirs formed separately. The mantle reservoir may have been sourced from a subducting proto-Pacific plate, whereas the crustal reservoir is most likely to be extended Australian crust. The data allow the possibility that the proto-Pacific mantle source was isotopically linked to the western Tasmanian crustal source.Comparison of Pb isotope data from the Girilambone district, Central Lachlan Subprovince, (e.g., Tritton and Avoca Tank Cu deposits) with those from the Cobar Cu–Au–Zn–Pb district, Eastern Lachlan Subprovince, in north central New South Wales indicates a less radiogenic signature, and probably older age, for deposits in the Girilambone district. Hence, a syngenetic volcanic-associated massive sulphide origin for these deposits is preferred over a syn-tectonic origin. The data are also consistent with formation of the Girilambone deposits in a back-arc basin inboard from the earliest phase of the Macquarie Volcanic Province.  相似文献   

2.
Exploration of Zn-rich sulphide deposits at Leadville, northern Lachlan Fold Belt, New South Wales, for over two decades has been largely on the premise that the mineralisation represents felsic volcanic-hosted massive sulphides (VHMS). Deposits are hosted by ?Silurian felsic metavolcanic, psammopelitic and calcareous metasedimentary rocks which have been intruded by the late Carboniferous I-type Gulgong Granite. Evidence for an epigenetic replacement (skarn) origin of the deposits, rather than representing metamorphosed volcanogenic massive sulphides, includes the proximity of evolved granitic intrusives and reactive carbonate rocks, a skarn mineral assemblage (with characteristic prograde and retrograde stages), lack of textural or lithological indications of an exhalative origin, and gossan and sulphide compositions consistent with Zn-Pb skarns and atypical of Lachlan Fold Belt VHMS deposits. Furthermore, sulphide lead isotope ratios are significantly more radiogenic than signatures for VHMS deposits in the Lachlan Fold Belt. Carbonate δ13C and δ18O and sulphide δ34S values are consistent with the interaction of magmatic hydrothermal fluids with Palaeozoic carbonate rocks and a largely magmatic source of sulphur. It is concluded that the Leadville deposits are of skarn type, genetically related to the Gulgong Granite.  相似文献   

3.
澳大利亚拉克兰造山带(又称拉克兰褶皱带,简称LFB)由强烈变形的寒武纪-泥盆纪深海沉积岩、燧石和基性火山岩,以及更年轻的盖层所构成,其造山过程表现为澳大利亚板块向东南方向不断增生的过程。该造山带的长期演化,形成了以维多利亚金矿省为典型代表的造山型金矿床及其它类型的多金属矿床,本质上这些矿床的形成与特殊的成矿地质条件密切相关。对该区相关文献进行分析和总结,提炼出拉克兰造山带金及多金属矿床的主要地质特征,划分出5种主要矿化类型:造山型金矿、花岗岩中细脉浸染型钨-锡矿、斑岩型铜-金矿、火山喷流铜-锌-金硫化物矿床、产于断陷盆地沉积岩中的铜-铅-锌-金矿。5种矿化类型各具特色,空间上有规律性地分布。  相似文献   

4.
In the Lachlan Fold Belt of southeastern Australia, major orogenic gold and porphyry gold–copper deposits formed simultaneously within distinct tectonic settings during a very short time interval at ca. 440 Ma. The driving mechanism that controlled the temporal coincidence of these deposits remains largely unexplained. A review of contemporaneous metallogenic, tectonic, magmatic and sedimentological events in central and eastern Australia reveals that a change in subduction dynamics along the Australian sector of the Early Palaeozoic circum–Gondwana mega-subduction system could have influenced lithospheric stress conditions far inboard of the subduction margin. The magnitude of ore formation and the spatial extent of related events are proposed in this paper to have been controlled by the interplay of mantle processes and lithospheric changes that followed slab break-off along a portion of the mega-subduction system surrounding Gondwana at that time. Slab break-off after subduction lock-up caused mantle upwelling that, in turn, provided an instantaneous heat supply for magmatic and hydrothermal events. Coincident reorganisation of lithospheric stress conditions far inboard of the proto-Pacific margin of Australia controlled reactivation of deep-lithospheric fault structures. These fault systems provided a pathway for fluids and heat fuelled by mantle upwelling into the upper lithosphere and caused the deposition of ~440 Ma gold deposits in the Lachlan Fold Belt, as well as a range of metallogenic, tectonic and sedimentary changes elsewhere in central and eastern Australia.  相似文献   

5.
《Gondwana Research》2014,25(3-4):1051-1066
The Early Palaeozoic Ross–Delamerian orogenic belt is considered to have formed as an active margin facing the palaeo-Pacific Ocean with some island arc collisions, as in Tasmania (Australia) and Northern Victoria Land (Antarctica), followed by terminal deformation and cessation of active convergence. On the Cambrian eastern margin of Australia adjacent to the Delamerian Fold Belt, island arc and backarc basin crust was formed and is now preserved in the Lachlan Fold Belt and is consistent with a spatial link between the Delamerian and Lachlan orogens. The Delamerian–Lachlan connection is tested with new zircon data. Metamorphic zircons from a basic eclogite sample from the Franklin Metamorphic Complex in the Tyennan region of central Tasmania have rare earth element signatures showing that eclogite metamorphism occurred at ~ 510 Ma, consistent with island arc–passive margin collision during the Delamerian(− Tyennan) Orogeny. U–Pb ages of detrital zircons have been determined from two samples of Ordovician sandstones in the Lachlan Fold Belt at Melville Point (south coast of New South Wales) and the Howqua River (western Tabberabbera Zone of eastern Victoria). These rocks were chosen because they are the first major clastic influx at the base of the Ordovician ‘Bengal-fan’ scale turbidite pile. The samples show the same prominent peaks as previously found elsewhere (600–500 Ma Pacific-Gondwana and the 1300–1000 Ma Grenville–Gondwana signatures) reflecting supercontinent formation. We highlight the presence of ~ 500 Ma non-rounded, simple zircons indicating clastic input most likely from igneous rocks formed during the Delamerian and Ross Orogenies. We consider that the most probable source of the Ordovician turbidites was in East Antarctica adjacent to the Ross Orogen rather than reflecting long distance transport from the Transgondwanan Supermountain (i.e. East African Orogen). Together with other provenance indicators such as detrital mica ages, this is a confirmation of the Delamerian–Lachlan connection.  相似文献   

6.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

7.
40Ar/39Ar data for muscovite separates and hydrothermally altered whole‐rock samples from the Ballarat West and the Ballarat East goldfields indicate that mesothermal gold mineralisation at Ballarat occurred during several episodic pulses, ranging in age from the Late Ordovician to the Early Devonian. Initial formation of auriferous structures in the Ballarat goldfields coincided with folding and thrusting associated with the development of the western Lachlan Fold Belt between 460 and 440 Ma. Subsequent fault reactivation and magmatism resulted in remobilisation and additional mineralisation between 410 and 380 Ma, and around 370 Ma. The results presented herein are in agreement with findings for other major gold deposits in central Victoria and further constrain the history of deformation, metamorphism and mineralisation in the western subprovince of the Lachlan Fold Belt.  相似文献   

8.
In situ laser ablation inductively coupled plasma mass spectrometryanalysis of trace elements, U–Pb ages and Hf isotopiccompositions of magmatic zircon from I- and S-type granitoidsfrom the Lachlan Fold Belt (Berridale adamellite and Kosciuskotonalite) and New England Fold Belt (Dundee rhyodacite ignimbrite),Eastern Australia, is combined with detailed studies of crystalmorphology to model petrogenetic processes. The presented examplesdemonstrate that changes in zircon morphology, within singlegrains and between populations, generally correlate with changesin trace element and Hf-isotope signatures, reflecting the mixingof magmas and changes in the composition of the magma throughmingling processes and progressive crystallization. The zircondata show that the I-type Kosciusko tonalite was derived froma single source of crustal origin, whereas the S-type Berridaleadamellite had two distinct sources including a significantI-type magma contribution. Complex morphology and Hf isotopevariations in zircon grains indicate a moderate contributionfrom a crustal component in the genesis of the I-type Dundeerhyodacite. The integration of data on morphology, trace elementsand Hf isotope variations in zircon populations provides a toolfor the detailed analysis of the evolution of individual igneousrocks; it offers new insights into the contributions of differentsource rocks and the importance of magma mixing in granite petrogenesis.Such information is rarely obtainable from the analysis of bulkrocks. KEY WORDS: granite source origins; zircon Hf isotopes; zircon petrogenesis; zircon morphology; zircon U–Pb ages  相似文献   

9.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   

10.
Lead isotope analyses have been performed on the two major Miocene mining districts of Romania, Baia Mare and Apuseni Mountains. These two districts have different non-overlapping 206Pb/204Pb isotopic signatures ranging from 18.752 to 18.876 and 18.497 to 18.740. In the Baia Mare district, epithermal deposits are overall homogeneous in their lead isotopic compositions and have values similar to the average of the calc-alkaline volcanic rocks. These results suggest a magmatic signature for the Pb (and possibly other metals) in the hydrothermal fluids. However, magmas in this district show isotopic evidence of crustal assimilation. In the southern Apuseni Mountains, the lead isotope compositions of sulfide minerals in porphyry copper deposits are clustered, confirming that Pb, and probably other metals, were derived principally from associated porphyry stocks. On the other hand, lead isotope data on sulfides in epithermal ore deposits are much more scattered, indicating a notable contribution of Pb from local country rocks. In the Apuseni Mountains, 'fertile' volcanics are few and appear to come from a more primitive mantle-derived source. Most of the analysed volcanic rocks seem 'barren'. Differences in lead isotopic compositions between the Baia Mare district and the Apuseni Mountains are due to a different basement, and probably to variations in crustal assimilation superimposed on variations in the mantle source composition. In the Apuseni Mountains, Pb may be partly inherited from the previous Mesozoic magmatic-hydrothermal stage. From a geodynamic point of view, it seems that the nature and the source of volcanic rocks and their position related to the collision area of the Carpathian arc are not the only factors controlling the 'fertility' of a volcanic district.  相似文献   

11.
New 40Ar/39Ar geochronological data support, and significantly expand upon, preliminary age data that were interpreted to suggest an episodic and diachronous emplacement of gold across the western Lachlan fold belt, Australia. These geochronological data indicate that mineralisation in the central Victorian gold province occurred in response to episodic, eastward progressing deformation, metamorphism and exhumation associated with the formation of the western Lachlan fold belt. Initial gold formation throughout the Stawell and the Bendigo structural zones can be constrained to a broad interval of time between 455 and 435 Ma, with remobilisation of metals into new structures and/or new pulses of mineralisation occurring between 420 and 400 Ma, and again between 380 and 370 Ma, linked to episodic variations in the regional stress-field and during intrusion of felsic dykes and plutons. This separation of ages is incompatible with the view that gold emplacement in the western Lachlan fold belt was the result of a single, orogen-wide event during the Devonian. A distinct phase of gold mineralisation, characterised by elevated Cu, Mo, Sb or W, is associated with both Late Silurian to Early Devonian (~420 to 400 Ma) and Middle to Late Devonian (~380 to 370 Ma) magmatism, when crustal thickening and shortening during the ongoing consolidation of the western Lachlan Fold Belt led to extensive melt development in the lower crust and resulted in widespread magmatism throughout central Victoria. These ~420 to 400 Ma and ~380 to 370 Ma occurrences, best exemplified by the Wonga deposit in the Stawell structural zone and many of the Woods Point deposits in the Melbourne structural zone, but also evidenced by occurrences at Fosterville and Maldon in the Bendigo structural zone, clearly formed synchronous with, or post-date, the emplacement of plutons and dykes, and thus are spatially (if not genetically) related to melt generation at depth. This later, magmatic-associated and polymetallic type of gold mineralisation is economically subordinate to the earlier, metamorphic-associated type of gold deposition in the Stawell and Bendigo structural zones, but tends to be the dominant style in the Melbourne Zone. These new geochronological constraints, together with zircon U-Pb data from felsic intrusive rocks of known relationship to gold mineralisation, demonstrate that initial hydrothermal alteration associated with gold emplacement in the western Lachlan fold belt was metamorphic-related, predating the emplacement of granite plutons by as much as 80 million years. This timing differs from other important orogenic gold districts where gold deposition is closely associated spatially with felsic magmatism. The early introduction of metamorphically derived fluids well before magmatism may reflect variations in the timing of peak metamorphic conditions at different crustal levels in an accretionary prism undergoing simultaneous deformation and erosion. Consequently, no genetic link exists between the main phase(s) of gold mineralisation and magmatism in the central Victorian gold province. With the exception of formation of a minor magmatism-related and geochemically-distinct mineralisation style at about 420 to 400 Ma, and again at about 380 to 370 Ma, the apparent spatial relationship between gold mineralisation and felsic intrusions is merely the result of melts and fluids being channelised along the same structures.  相似文献   

12.
The Neoproterozoic Vazante Group at the western border of the São Francisco Craton, Brazil, hosts the largest Zn–Pb district in South America. Several authors have classified this mineral district as Mississippi Valley-type (MVT), based on the intimate association with carbonates and the epigenetic character of most ore bodies. In this paper, we present 47 new lead isotope data from four deposits located along the 300 km N–S Vazante–Paracatu–Unai linear trend. Pb isotope ratios indicate sources with relatively high U/Pb and Th/Pb ratios. Considering the 206Pb/204Pb and 208Pb/204Pb ratios as indicative parameters for the source, we suggest an upper crustal source for the metals. The small variation on the Pb isotope ratios compared to those observed in the classical MVT deposits, and other geological, fluid inclusion and sulphur isotopic data indicates a metallogenic event of long duration. It was characterized by focused circulation of hydrothermal fluids carrying metals from the basement rocks and from the sedimentary pile. The data obtained are more compatible with an evolution model similar to that of IRISH-type deposits. The existence of three Pb isotopic populations could be the result of regional differences in composition of the source rocks and in the fluid–rock interaction since the mineralization is a long-term process.  相似文献   

13.
Two lithofacies maps of the Lachlan Fold Belt, one for the Ordovician and one for the Silurian, are illustrated. Both maps indicate shorelines in western New South Wales, Victoria and Tasmania.

The Ordovicoan map suggests open‐sea conditions eastwards from the shoreline with one major and two minor andesitic volcanoes (or volcanic centres). The Silurian map suggests segmentation of the Lachlan Fold Belt into the Melbourne Basin, Omeo Land, Newell Basin, and Budawang Land. The Newell Basin displays a nearshore (Louth‐Mitta Mitta) coarse clastics facies and an offshore (Wellington‐Cooma) platform carbonate facies. Acid volcanism was widespread over the Newell Basin in Silurian time, but did not occur in the Melbourne Basin.

The Louth‐Mitta Mitta and Wellington‐Cooma facies boundary coincides with the position of the Coolac‐Honeybugle Serpentine Belt and the outcrop area of the Girilambone Beds, suggesting that these features were already in some way prominent during the Silurian Period: the Serpentine Belt may have been a fault, and the Girilambone Beds may have been land.

The origin of base‐metal deposits in the Silurian rocks is thought to be somehow related to the heat generated in the subsurface during Silurian time as is indicated by the volcanism and granite intrusion; and also to the fact that the deposits occur in a transgressive sequence which contains the first phase of acid volcanism in the known geological history of the Lachlan Fold Belt.  相似文献   

14.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

15.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

16.
通过对黔西南微细浸染金矿床Pb、S、O、H及Ar同位素地球化学的研究,结合矿床时空分布特征,证实矿质及矿化剂来源具深源及浅源混合特征,成矿流体属深源流体与大气降水混合而成的上升热流体。金矿床可能是上升热流体改造地壳岩石的产物。  相似文献   

17.
Devonian basaltic to andesitic dykes and compositionally similar plutons of the southern Lachlan Fold Belt are often temporally and spatially closely associated with large granitic complexes. Mafic intrusions play a major role in the transfer of heat into the continental crust, providing a thermal ‘engine’ which leads to crustal melting, and geochemical/isotopic evidence indicates that they contribute chemical constituents to the products of this melting. Studied mafic‐intermediate dykes in the southern Lachlan Fold Belt have tholeiitic to alkaline affinities and include groups with both high and low Ti and K. Several dyke generations may be associated with a single felsic complex. Primitive mantle‐normalised trace‐element abundance patterns with negative Nb and Ti anomalies for basaltic/andesitic and gabbroic/dioritic rocks as young as Early Devonian most resemble those of modern island arcs and suggest an influence of subduction on mantle magma sources. However, some Middle and Late Devonian mafic rocks are enriched in light rare‐earth elements and other incompatible elements, lack significant Nb anomalies, and confirm the change to continental‐rift extensional settings clearly indicated by Lachlan Fold Belt geology.  相似文献   

18.
In western Victoria, a widespread stratiform style of gold enrichment in Palaeozoic black mudstone and chert—clearly different from the classic mesothermal quartz vein deposits of the Victorian goldfields—has been confirmed by whole-rock geochemistry and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). This enrichment pre-dates compaction, deformation and low-grade metamorphism of the sedimentary host-rocks, and therefore possibly developed diagenetically during slow deposition of the thin carbonaceous black mudstone beds and the thinner layers of chert. These paired strata have been documented at many locations in three regional outcrop areas of chevron-folded Cambrian and Lower Ordovician metasediments in the Stawell and Bendigo Zones, where they are interbedded with quartz-rich turbidites. The layers were named ‘indicators’ by the early miners, who found locally rich nuggety gold deposits at intersections between these layers and mesothermal quartz veins. Gold is present in euhedral pyrite crystals in both black shale and chert. LA-ICPMS analysis of individual pyrite crystals in the indicator beds shows that pyrite is enriched in Au, As, Sb, Se, Te and Bi. The Au content of pyrite varies from 0.03 to 2.69 ppm with a mean of 0.58 ppm and shows a positive correlation with As, which varies from 1000 to 6000 ppm. Many pyrite crystals show enrichment of gold in their cores and depletion in their rims, confirming the likely syngenetic or syndiagenetic accumulation of gold during pyrite formation in the sediments. Prior to regional metamorphism, folding and faulting, the many indicator strata in the outcrop areas were parts of an extensive marine sequence of Late Cambrian and Early Ordovician age. The former primary source of this mineralisation is considered to have been one or more contemporaneously exhalative submarine hydrothermal systems. Thus, the older Palaeozoic sediments of the western Lachlan Fold Belt were significantly enriched in syngenetic gold in the Early Palaeozoic, at least 40 million years before emplacement of the quartz – gold vein deposits of the goldfields.  相似文献   

19.
Fluid inclusion microthermometry, Raman spectroscopy and noble gas plus halogen geochemistry, complemented by published stable isotope data, have been used to assess the origin of gold-rich fluids in the Lachlan Fold Belt of central Victoria, south-eastern Australia. Victorian gold deposits vary from large turbidite-hosted ‘orogenic’ lode and disseminated-stockwork gold-only deposits, formed close to the metamorphic peak, to smaller polymetallic gold deposits, temporally associated with later post-orogenic granite intrusions. Despite the differences in relative timing, metal association and the size of these deposits, fluid inclusion microthermometry indicates that all deposits are genetically associated with similar low-salinity aqueous, CO2-bearing fluids. The majority of these fluid inclusions also have similar 40Ar/36Ar values of less than 1500 and 36Ar concentrations of 2.6–58 ppb (by mass) that are equal to or much greater than air-saturation levels (1.3–2.7 ppb). Limited amounts of nitrogen-rich fluids are present at a local scale and have the highest measured 40Ar/36Ar values of up to 5,700, suggesting an external or distinct source compared to the aqueous fluids. The predominance of low-salinity aqueous–carbonic fluids with low 40Ar/36Ar values, in both ‘orogenic’ and ‘intrusion-related’ gold deposits, is attributed to fluid production from common basement volcano-sedimentary sequences and fluid interaction with sedimentary cover rocks (turbidites). Aqueous fluid inclusions in the Stawell–Magdala deposit of western Victoria (including those associated with N2) preserve mantle-like Br/Cl and I/Cl values. In contrast, fluid inclusions in deposits in the eastern structural zones, which contain more abundant shales, have elevated molar I/Cl ratios with maximum values of 5,170 × 10−6 in the Melbourne Zone. Br/I ratios in this zone range from 0.5 to 3.0 that are characteristic of fluid interaction with organic-rich sediments. The maximum I/Cl and characteristic Br/I ratios provide evidence for organic Br and I released during metamorphism of the shales. Therefore, the regional data provide strong evidence for the involvement of sedimentary components in gold mineralisation, but are consistent with deeper metamorphic fluid sources from basement volcano-sedimentary rocks. The overlying sediments are probably involved in gold mineralisation via fluid–rock interaction.  相似文献   

20.
Orogenic gold mineral systems in the Western Lachlan Orogen (Victoria) and the Hodgkinson Province (Queensland) produced gold provinces characterised by vastly different scales of gold endowment and strongly uneven distribution of gold mineralisation within each province. The volume of hydrous pyrite-bearing rocks undergoing metamorphic devolatilisation during thermo-tectonic events driving orogenic gold mineral systems represents a fundamental first-order constraint on the total gold endowment and its broad spatial distribution, both between and within the provinces. Most of the largest gold deposits in both regions occur in linear, richly-endowed metallogenic zones, oblique to the dominant regional structures and related to deep crustal domain boundaries. These boundaries, with only subtle surface expressions, were the major regional structural controls which promoted focused near-vertical flow of mineralising metamorphic fluids above the outer margins of cratonic blocks in the lower crust. Recognised major faults represented only more local scale and often indirect controls on the focused fluid flow, particularly effective above the deep cratonic block boundaries overlain by relatively thick crustal source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号