首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a holographic dark energy model in the framework of Brans-Dicke (BD) theory with taking into account the interaction between dark matter and holographic dark energy. We use the recent observational data sets, namely SN Ia compressed Joint Light-Analysis (cJLA) compilation, Baryon Acoustic Oscillations (BAO) from BOSS DR12 and the Cosmic Microwave Background (CMB) of Planck 2015. After calculating the evolution of the equation of state as well as the deceleration parameters, we find that with a logarithmic form for the BD scalar field the phantom crossing can be achieved in the late time of cosmic evolution. Unlike the conventional theory of holographic dark energy in standard cosmology (\(\omega_{D}=0\)), our model results in a late time accelerated expansion. It is also shown that the cosmic coincidence problem may be resolved in the proposed model. We execute the statefinder and Om diagnostic tools and demonstrate that interaction term does not play a significant role. Based on the observational data sets used in this paper it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\varOmega_{m}=0.268^{+0.008~+0.010}_{-0.007~-0.009}\), \(\alpha =3.361^{+0.332~+0.483} _{-0.401~-0.522}\), \(\beta =5.560^{+0.541~+0.780}_{-0.510~-0.729}\), \(c=0.777^{+0.023~+0.029}_{-0.017~-0.023}\) and \(b^{2} =0.045\), according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

2.
The aim of this paper is to study new holographic dark energy (HDE) model in modified \(f(R,T)\) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model \(f(R,T)=R+\lambda T\), where \(R\) is the Ricci scalar, \(T\) the trace of the energy-momentum tensor and \(\lambda \) is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, \(\zeta =\zeta _{0}= \text{const.}\) to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of \(\lambda \) over the constraint on \(\zeta _{0}\) to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on \(\lambda \). We also investigate the statefinder and \(\mathit{Om}\) diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to \(\varLambda \mathit{CDM}\) model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.  相似文献   

3.
In this paper we have studied the anisotropic Kantowski-Sachs, locally rotationally symmetric (LRS) Bianchi type-I and LRS Bianchi type-III geometries filled with dark energy and one dimensional cosmic string in the Saez-Ballester theory of gravitation. To get physically valid solution we take hybrid expansion law of the average scale factor which is a product of power and exponential type of functions that results in time dependent deceleration parameter (\(q\)). The equation of state parameter of dark energy (\(\omega _{\mathit{de}}\)) has been discussed and we have observed that for the three models it crosses the phantom divide line (\(\omega _{\mathit{de}} = -1\)) and shows quintom like behavior. The density of dark energy (\(\rho _{\mathit{de}}\)) is an increasing function of redshift and remains positive throughout the evolution of the universe for the three models. Moreover in Kantowski-Sachs and LRS Bianchi type-I geometries the dark energy density dominates the string tension density (\(\lambda \)) and proper density (\(\rho \)) throughout the evolution of the universe. The physical and geometrical aspects of the statefinder parameters (\(r,s\)), squared speed of sound (\(v_{s}^{2} \)) and \(\omega _{\mathit{de}}\)\(\omega ^{\prime }_{\mathit{de}}\) plane are also discussed.  相似文献   

4.
In this paper, we study an interacting holographic dark energy model in the framework of fractal cosmology. The features of fractal cosmology could pass ultraviolet divergencies and also make a better understanding of the universe in different dimensions. We discuss a fractal FRW universe filled with the dark energy and cold dark matter interacting with each other. It is observed that the Hubble parameter embraces the recent observational range while the deceleration parameter demonstrates an accelerating universe and a behavior similar to \(\Lambda \mbox{CDM}\). Plotting the equation of state shows that it lies in phantom region for interaction mode. We use \(\mathit{Om}\)-diagnostic tool and it shows a phantom behavior of dark energy which is a condition of avoiding the formation of black holes. Finally we execute the StateFinder diagnostic pair and all the trajectories for interacting and non-interacting state of the model meet the fixed point \(\Lambda \mbox{CDM}\) at the start of the evolution. A behavior similar to Chaplygin gas also can be observed in statefinder plane. We find that new holographic dark energy model (NHDE) in fractal cosmology expressed the consistent behavior with recent observational data and can be considered as a model to avoid the formation of black holes in comparison with the main model of NHDE in the simple FRW universe. It has also been observed that for the interaction term varying with matter density, the model generates asymptotic de-Sitter solution. However, if the interaction term varies with energy density, then the model shows Big-Rip singularity. Using our modified CAMB code, we observed that the interacting model suppresses the CMB spectrum at low multipoles \(l<50\) and enhances the acoustic peaks. Based on the observational data sets used in this paper and using Metropolis-Hastings method of MCMC numerical calculation, it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\Omega _{m0}=0.278^{+0.008~+0.010} _{-0.007~-0.009}\), \(H_{0}=69.9^{+0.95~+1.57}_{-0.95~-1.57}\), \(r_{c}=0.08^{+0.02~+0.027}_{-0.002~-0.0027}\), \(\beta =0.496^{+0.005~+0.009} _{-0.005~-0.009}\), \(c= 0.691^{+0.024~+0.039}_{-0.025~-0.037}\) and \(b^{2}=0.035\) according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

5.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

6.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

7.
We present an analysis of the geoeffectiveness of corotating interaction regions (CIRs), employing the data recorded from 25 January to 5 May 2005 and throughout 2008. These two intervals in the declining phase of Solar Cycle 23 are characterised by a particularly low number of interplanetary coronal mass ejections (ICMEs). We study in detail how four geomagnetic-activity parameters (the Dst, Ap, and AE indices, as well as the Dst time derivative, \(\mathrm{dDst}/\mathrm{d}t\)) are related to three CIR-related solar wind parameters (flow speed, \(V\), magnetic field, \(B\), and the convective electric field based on the southward Geocentric solar magnetospheric (GSM) magnetic field component, \(\mathit{VB}_{s}\)) on a three-hour time resolution. In addition, we quantify statistical relationships between the mentioned geomagnetic indices. It is found that Dst is correlated best to \(V\), with a correlation coefficient of \(\mathrm{cc}\approx0.6\), whereas there is no correlation between \(\mathrm{dDst}/\mathrm{d}t\) and \(V\). The Ap and AE indices attain peaks about half a day before the maximum of \(V\), with correlation coefficients ranging from \(\mathrm{cc}\approx0.6\) to \(\mathrm{cc}\approx0.7\), depending on the sample used. The best correlations of Ap and AE are found with \(\mathit{VB}_{s}\) with a delay of 3 h, being characterised by \(\mathrm{cc}\gtrsim 0.6\). The Dst derivative \(\mathrm{dDst}/\mathrm{d}t\) is also correlated with \(\mathit{VB}_{s}\), but the correlation is significantly weaker \(\mathrm{cc}\approx 0.4\)?–?0.5, with a delay of 0?–?3 h, depending on the employed sample. Such low values of correlation coefficients indicate that there are other significant effects that influence the relationship between the considered parameters. The correlation of all studied geomagnetic parameters with \(B\) are characterised by considerably lower correlation coefficients, ranging from \(\mathrm{cc}=0.3\) in the case of \(\mathrm{dDst}/\mathrm{d}t\) up to \(\mathrm{cc}=0.56\) in the case of Ap. It is also shown that peak values of geomagnetic indices depend on the duration of the CIR-related structures. The Dst is closely correlated with Ap and AE (\(\mathrm{cc}=0.7\)), Dst being delayed for about 3 h. On the other hand, \(\mathrm{dDst}/\mathrm{d}t\) peaks simultaneously with Ap and AE, with correlation coefficients of 0.48 and 0.56, respectively. The highest correlation (\(\mathrm{cc}=0.81\)) is found for the relationship between Ap and AE.  相似文献   

8.
We use a formulation of the N-body problem in spaces of constant Gaussian curvature, \({\kappa }\in \mathbb {R}\), as widely used by A. Borisov, F. Diacu and their coworkers. We consider the restricted three-body problem in \(\mathbb {S}^2\) with arbitrary \({\kappa }>0\) (resp. \(\mathbb {H}^2\) with arbitrary \({\kappa }<0\)) in a formulation also valid for the case \({\kappa }=0\). For concreteness when \({\kappa }>0\) we restrict the study to the case of the three bodies at the upper hemisphere, to be denoted as \(\mathbb {S}^2_+\). The main goal is to obtain the totality of relative equilibria as depending on the parameters \({\kappa }\) and the mass ratio \(\mu \). Several general results concerning relative equilibria and its stability properties are proved analytically. The study is completed numerically using continuation from the \({\kappa }=0\) case and from other limit cases. In particular both bifurcations and spectral stability are also studied. The \(\mathbb {H}^2\) case is similar, in some sense, to the planar one, but in the \(\mathbb {S}^2_+\) case many differences have been found. Some surprising phenomena, like the coexistence of many triangular-like solutions for some values \(({\kappa },\mu )\) and many stability changes will be discussed.  相似文献   

9.
We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter (\(\alpha \)). Further, we carry out the model calculation of quasi-periodic oscillation frequency (\(\nu _{\mathrm{QPO}}\)) that is frequently observed in black hole sources and observe that \(\nu ^\mathrm{max}_{\mathrm{QPO}}\) increases with the increase of black hole spin (\(a_k\)). Then, we employ our model in order to explain the High Frequency Quasi-Periodic Oscillations (HFQPOs) observed in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of \(a_k\) based on observed HFQPOs (\(\sim \)300 Hz and \(\sim \)450 Hz) for the black hole source GRO J1655-40.  相似文献   

10.
The Sunyaev-Zel’dovich (SZ) effect represents a small spectral distortion to the cosmic microwave background (CMB) radiation, caused by the Compton scattering of CMB photons by the hot gas of galaxy clusters. In an early stage of universe, the SZ effect generates \(\mu\)-type of distortions for the CMB spectrum. A \(\mu\)-type distortion is created between the double Compton scattering decoupling (\(z \sim 10^{6}\)) and the thermalization decoupling by the Compton scattering (\(z \sim 10^{5}\)). In this case, to describe the small spectral distortion of the CMB spectrum, we use the Bose-Einstein (\(\mu\)-type) distribution with a non-zero chemical potential. At present, it is interesting to investigate the effect of this spectral distortion on the integral characteristics of the Bose-Einstein (\(\mu\)-type) spectrum. The thermal radiative and thermodynamic functions are such integral characteristics. These functions are as follows: a) the total radiation power per unit area; b) total energy density; c) number density of photons; d) grand potential density; e) Helmholtz free energy density; f) entropy density; g) heat capacity at constant volume; h) enthalpy density; and i) pressure. Precise analytical expressions are obtained for the temperature dependences of these functions. Using the observational data obtained by the COBE FIRAS, PIXIE, PRISM, and Planck missions, the thermal radiative and thermodynamic functions are calculated. A comparative analysis of the results obtained with the results for the same functions of the CMB spectrum at \(T = 2.72548~\mbox{K}\) is carried out. Very small distortions are observed for the thermal radiative and thermodynamic functions. In the redshift range \(10^{5} < z < 3 \times10^{6}\), these functions are calculated. The expressions are obtained for new astrophysical parameters, such as the entropy density/Boltzmann constant and number density, created by the Bose-Einstein (\(\mu\)-type) spectrum.  相似文献   

11.
In present paper higher harmonic electrostatic ion-cyclotron (EIC) parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field with the ambient magnetic field has been studied, in different regions of the magnetosphere of Saturn. Dimensionless growth rate variation of EIC waves has been observed with respect to \(k_{ \bot } \rho _{i}\) for various plasma parameters. Effect of velocity shear scale length (\(A_{i}\)), temperature anisotropy (\(T_{ \bot } /T_{\|}\)), magnetic field (\(B\)), electric field (\(E\)), inhomogeneity (\(P/a\)), angle of propagation (\(\theta \)), ratio of electron to ion temperature (\(T_{e}/T_{i}\)) and density gradient (\(\varepsilon _{n}\rho _{i}\)) on the growth of EIC waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation for dispersion relation and growth rate has been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the data from the Cassini in the inner magnetosphere of Saturn in the extended region where ion cyclotron waves have been observed. The change in the growth of these waves due to the presence of Enceladus has been analyzed.  相似文献   

12.
In this paper, multiwavelength chromatic luminosity at radio (\(\log L _{\mathrm{R}}\)), optical (\(\log L_{\mathrm{O}}\)), X-ray (\(\log L _{\mathrm{X}}\)), and \(\gamma \)-rays (\(\log L_{\gamma }\)) for a sample of 442 Fermi blazars with known redshifts are collected from Fan et al. (2016), to study the correlations between the \(\gamma \)-rays and the low-energy bands using a multiple linear regression analysis. In this way, we can see which band is more important for the \(\gamma \)-ray emissions. Mutual correlation analysis is also used to discuss the correlations between the \(\gamma \)-ray and the low energy bands for the whole sample and subclasses. We come to following conclusions:
  1. 1.
    The multiple linear correlation indicates that the \(\gamma \)-rays are correlated with the radio, optical and the X-ray emissions for the whole sample and the subclasses of flat spectrum radio quasars (FSRQs) and BL Lac objects (BL Lacs), the correlation between the \(\gamma \)-rays and the radio emissions is the strongest one.
     
  2. 2.
    For BL Lacs, the optical emissions are more important than the X-rays for the \(\gamma \)-rays, while the X-ray emissions are more important than optical ones in FSRQs.
     
  3. 3.
    The \(\gamma \)-ray emissions in HBL are from an synchrotron self-Compton, while those in FSRQs may be from external Compton and synchrotron self-Compton as well.
     
  相似文献   

13.
Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson’s equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, \(q\) (\(\alpha \)). It is recognized that \(\alpha \) plays a significant role in observing damping or growing DAW oscillations. For small values of \(\alpha \), damping modes have been observed until reaching a certain value of \(\alpha \) at which \(\omega _{i}\) vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.  相似文献   

14.
In extremely dense neutrino environments like in supernova core, the neutrino-neutrino refraction may give rise to self-induced flavor conversion. These neutrino flavor oscillations are well understood from the idea of the exponentially growing modes of the interacting oscillators in the flavor space. Until recently, the growth rates of these modes were found to be of the order of the vacuum oscillation frequency \(\Delta m^2/2E\) [\(\mathcal {O}(1~\mathrm{km}^{-1})\)] and were considered slow growing. However, in the last couple of years it was found that if the system was allowed to have different zenith-angle distributions for the emitted \(\nu _e\) and \(\bar{\nu }_e\) beams then the fastest growing modes of the interacting oscillators grew at the order of \(\mu =\sqrt{2} G_\mathrm{F}n_{\nu }\), a typical \(\nu \)\(\nu \) interaction energy [\(\mathcal {O}(10^5~\mathrm{km}^{-1})\)]. Thus the growth rates are very large in comparison to the so-called ‘slow oscillations’ and can result in neutrino flavor conversion on a much faster scale. In fact, the point that the growth rates are no longer dependent on the vacuum oscillation frequency \(\Delta m^2/2E\), makes these ‘fast flavor conversions’ independent of \(\Delta m^2\) (thus mass) and energy. This is a surprising result as neutrino flavor conversions are considered to be the ultimate proof of massive neutrinos. However, the importance of this effect in the realistic astrophysical scenarios still remains to be understood.  相似文献   

15.
Profile variations in the \(\hbox {H}\alpha \) and \(\hbox {H}\beta \) lines in the spectra of the star HD14134 are investigated using observations carried out in 2013–2014 and 2016 with the 2-m telescope at the Shamakhy Astrophysical Observatory. The absorption and emission components of the \(\hbox {H}\alpha \) line are found to disappear on some observational days, and two of the spectrograms exhibit inverse P-Cyg profile of \(\hbox {H}\alpha \). It was revealed that when the \(\hbox {H}\alpha \) line disappeared or an inversion of the P-Cyg-type profile is observed in the spectra, the \(\hbox {H}\beta \) line is displaced to the longer wavelengths, but no synchronous variabilities were observed in other spectral lines (CII \( \lambda \) 6578.05 Å, \( \lambda \) 6582.88 Å  and HeI \( \lambda \) 5875.72 Å) formed in deeper layers of the stellar atmosphere. In addition, the profiles of the \(\hbox {H}\alpha \) and \(\hbox {H}\beta \) lines have been analysed, as well as their relations with possible expansion, contraction and mixed conditions of the atmosphere of HD14134. We suggest that the observational evidence for the non-stationary atmosphere of HD14134 can be associated in part with the non-spherical stellar wind.  相似文献   

16.
It is reasonable that neighboring coronal loops may obtain similar momentum during a flare. The fast kink oscillations (FKOs) between them are thus mainly influenced by their physical differences. We discuss the dependencies of FKO on the physical properties of coronal loops in a low-\(\beta \) thin-tube approximation. From the analysis, we obtain the analytic relationship between the density [\(\rho _{\mathrm{i}}\)] and magnetic field [\(B\)] of loops and the corresponding period [\(\tau \)] and amplitude [\(A\)] of FKO, which may provide us with a powerful tool to diagnose the physical differences between neighboring loops.  相似文献   

17.
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.  相似文献   

18.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   

19.
We use the data for the \(\text{H}\beta\) emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates \(\langle \mbox{SFR} \rangle \) averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking \(\langle \mbox{SFR} \rangle \) and the star formation rate \(\mbox{SFR}_{0}\) derived from the \(\text{H}\beta\) luminosity at zero starburst age is found to be 0.04. We compare \(\langle \mbox{SFR} \rangle \mbox{s}\) with some commonly used SFRs which are derived adopting a continuous star formation during a period of \({\sim}\,100~\mbox{Myr}\), and find that the latter ones are 2–3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for \(\langle \mbox{SFR} \rangle \) determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of \({\sim}\,2\) of the \(\langle \mbox{SFR} \rangle \) averaged over the lifetime of the bursting compact galaxy.  相似文献   

20.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号