首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在许多激变射电源(Blazar天体)中,观测到一种非常特别的现象,即偏振角的快速旋转.在相对论喷流的框架下,这种偏振角的旋转可以用双成分模型来解释.在这个模型中,一个成分是作为背景喷流本身的辐射,是恒定不变的成分;另一个成分被认为是沿喷流传播的相对论性激波,它产生变化的流量和偏振.这两个成分的偏系辐射的叠加可以产生观测到的偏振角旋转。本文讨论了三个激变射电源(BL Lac,AO0235+164,0727-115)中发生的偏振角旋转.结果表明,用相对论喷流-激波双成分模型可以很好地拟合观测到的偏振角旋转、偏振度和流量变化。说明射电激变源中出现的快速偏振和流量变化可能是由于相对论激波沿喷流传播时,激波辐射区中磁场取向和有序性以及强度和电子密度的变化所引起的。  相似文献   

2.
Homan & Lister have recently published circular polarization (CP) detections for 34 objects in the MOJAVE sample – a set of bright, compact active galactic nuclei (AGN) being monitored by the Very Long Baseline Array at 15 GHz. We report the detection of 15-GHz parsec-scale CP in two more AGN (3C 345 and 2231+114), and confirm the MOJAVE detection of CP in 1633+382. It is generally believed that the most likely mechanism for the generation of this CP is Faraday conversion of linear polarization (LP) to CP. A helical jet magnetic field ( B field) geometry can facilitate this process – linearly polarized emission from the far side of the jet is converted to CP as it passes through the magnetized plasma at the front side of the jet on its way towards the observer. In this case, the sign of the generated CP is essentially determined by the pitch angle and helicity of the helical B field. We have determined the pitch-angle regimes and helicities of the helical jet B fields in eight AGN for which parsec-scale CP has been detected, and used them to predict the expected CP signs for these AGN if the CP is generated via conversion in these helical fields. We have obtained the intriguing result that our predictions agree with the observed signs in all eight cases, provided that the longitudinal B field components in the jets correspond to south magnetic poles. This clearly non-random pattern demonstrates that the observed CP in AGN is directly associated with the presence of helical jet B fields. These results suggest that helical B fields are ubiquitous in AGN jets.  相似文献   

3.
Polarization position angle swings of - 180 ° observed in extragalactic radio sources are a regular behavior of variability in polarization. They should be due to some kind of physically regular process. We consider relativistic shocks which propagate through and 'illuminate' regular configurations of magnetic field, producing polarization angle swing events. Two magnetic field configurations (force-free field and homogeneous helical field) are considered to demonstrate the results. It is shown that the properties of polarization angle swings and the relationship between the swings and variations in total and polarized flux density are critically dependent on the configuration of magnetic field and the dynamical behavior of the shock. In particular, we find that in some cases polarization angle swings can occur when the total and polarized flux densities only vary by a very small amount. These results may be useful for understanding the polarization variability with both long and short timescales obser  相似文献   

4.
观测表明, 黑洞双星的B型准周期振荡(Quasi-Periodic Oscillation, QPO)频率与幂律通量之间存在正相关性. 试图基于阿尔文波振荡模型定量解释该相关性. 标准薄吸积盘辐射通量极大值处的阿尔文波振荡产生QPO. 标准薄盘上的软光子与冕或喷流基部的热电子介质发生逆康普顿散射产生幂律通量. 通过吸积率的连续变化, 得到QPO频率与幂律通量关系的分析解和数值解. 模拟得到的相关性在合理的参数范围内与观测值相吻合. QPO频率与幂律通量的正相关性可以理解为, 较强的磁场导致较高的阿尔文波频率和较高的电子温度从而得到较高的幂律通量. 结果表明B型QPO可能与吸积盘或喷流中的环向磁场的活动有关.  相似文献   

5.
A 200-second X-ray quasi-periodicity in the 2-8 ke V band from Swift J1644+57 was found by Reis et al.From the onset time of quasi-periodic oscillation(QPO),we show that Swift J1644+57 is a plunging event.This QPO may be related to discrete clumps from the accretion disk falling into a supermassive black hole,then the outflow in the jet may be also discontinuous.We estimate the lifetime of clumps to be about several hundreds seconds and the fraction of clumpy ejecta to be about 30% from the QPO.The other possible model involves the interface between the inflow and jet magnetosphere in the magnetically choked accretion flow.Theory and numerical simulations indicate that a magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface can produce a jet-disk QPO mechanism.This event may be the first evidence of jet-disk QPO.From observations,the two models are comparable.  相似文献   

6.
Simulated images of synchrotron intensity and polarization are presented for a simple, semidynamical model of conical shock waves in an astrophysical jet. Earlier work is extended by inclusion of a component of upstream magnetic field parallel to the jet in addition to the tangled (or disordered) component considered in the earlier paper. Results for several cases representing shocks of moderate strength are shown. It is found that the on-axis polarization reflects the upstream magnetic field structure. Off-axis, the electric field of polarization is oblique to the axis and covers a range depending on the shock cone angle and viewing angle. The results are compared with the structure of a bright knot about 0.8 arcsec from the nucleus in the quasar 3C 380, which may be an example of this kind of structure.  相似文献   

7.
We present the results of multifrequency (15 + 8 + 5 GHz) polarization Very Long Baseline Array (VLBA) observations of the three BL Lacertae objects 0745+241, 1418+546 and 1652+398 together with 5-GHz VLBI Space Observatory Programme (VSOP) observations of 1418+546 and 1.6- and 5-GHz VSOP observations of the blazar 1055+018. The jets of all these sources have polarization structure transverse to the jet axis, with the polarization E vectors aligned with the jet along the jet spine and 'sheaths' of orthogonal E vectors at one or both edges of the jet. The presence of polarization aligned with the jet near the 'spine' may indicate that the jets are associated with helical B fields that propogate outward with the jet flow; the presence of orthogonal polarization near the edges of the jet may likewise be a consequence of a helical jet B field, or may be owing to an interaction with the ambient medium on parsec scales. We have tentatively detected interknot polarization in 1055+018 with E aligned with the local jet direction, consistent with the possibility that the jet of this source is associated with a helical B field.  相似文献   

8.
The rapid polarization position angle swing of ~ 180?observed in QSO 1150+812 at 2cm by Kochenov and Gabuzda is quite a regular event. One interesting property of the event is that, during the time of the swing the polarized flux density remained almost constant. We suggest that such an event can be explained in terms of a relativistic thin shock propagating through a uniform helical magnetic field, giving rise to relativistic aberration effects as the transverse field component rotates. The model may also be applicable to other similar events in which variations in polarization are not accompanied by variations in total flux density.  相似文献   

9.
Starting from the observation that kilohertz quasi-periodic oscillations (kHz QPOs) occur in a very narrow range of X-ray luminosities in neutron star low-mass X-ray binaries, we try to link the kHz QPO observability to variations of the neutron star magnetospheric radius, in response to changing mass inflow rate. At low luminosities, the drop-off of kHz QPO activity may be explained by the onset of the centrifugal barrier, when the magnetospheric radius reaches the corotation radius. At the opposite side, at higher luminosities, the magnetospheric radius may reach the neutron star and the vanishing of the magnetosphere may lead to the stopping of the kHz QPO activity. If we apply these constraints, the magnetic fields of atoll [B approximately 0.3-1x108 G for Aql X-1] and Z [B approximately 1-8x108 G for Cyg X-2] sources can be derived. These limits naturally apply in the framework of beat-frequency models but can also work in the case of general relativistic models.  相似文献   

10.
This paper presents results of our monitoring of BL Lac at the 2.56 m Nordic Optical Telescope in La Palma and at the 0.91 m telescope at National Astronomical Observatory in Dodaira, Japan. On La Palma we used aUBVRI-photopolarimeter which gives truly simultaneous observations in all five colour bands. At Dodaira we used a photopolarimeter which gives simultaneously photometry atB, V andR-bands and polarimetry atV-band. We have observations of BL Lac during flare behaviour and during these times we have observed a clear rotation of the polarization position angle. During these flares the polarization level has also been strongly variable and the object has lost its preferred direction of the polarization position angle. The reason for this behaviour remains still unclear, but there are two possible explanations: shocks in the helical magnetic field in the jet pointing nearly towards us or polarized synchrotron flares rotating within the accretion disk (seen nearly face on) of the supermassive central black hole.  相似文献   

11.
The extended nonthermal X-ray emission of extragalactic jets like Centaurus A can only be explained by in situ particle acceleration. The only energy source in the entire jet region is the magnetic field. Magnetic reconnection can convert the free energy stored in the helical configuration to particle kinetic energy. In the collisionless magnetized jet plasma, the inertia-driven reconnection is operating in a highly filamentary magnetic flux rope, and this results in a continuously charged particle acceleration. The synchrotron radiation of these particles can cause the observed X-ray emission in Centaurus A.  相似文献   

12.
We investigate the brightest regions of the kpc-scale jet in the powerful radio galaxy 3C 346, using new optical Hubble Space Telescope ( HST ) ACS/F606W polarimetry together with Chandra X-ray data and 14.9 and 22.5 GHz Very Large Array (VLA) radio polarimetry. The jet shows a close correspondence between optical and radio morphology, while the X-ray emission shows a  0.80 ± 0.17 kpc  offset from the optical and radio peak positions. Optical and radio polarimetry show the same apparent magnetic field position angle and fractional polarization at the brightest knot, where the jet undergoes a large kink of almost 70° in the optical and radio images. The apparent field direction here is well aligned with the new jet direction, as predicted by earlier work that suggested the kink was the result of an oblique shock. We have explored models of the polarization from oblique shocks to understand the geometry of the 3C 346 jet, and find that the upstream flow is likely to be highly relativistic  (βu= 0.91+0.05−0.07)  , where the plane of the shock front is inclined at an angle of  η= 51°± 11°  to the upstream flow which is at an angle  θ= 14+8−7  deg to our line of sight. The actual deflection angle of the jet in this case is only 22°.  相似文献   

13.
利用UMRAO数据平台,研究了类星体3C273的射电流量密度与偏振度的关系(包括4.8GHz,8GHz和14.5GHz3个频段),结果发现偏振度与射电流量在3个频段都具有很强的负相关性。这些结果可能表明3C273的射电流量密度和偏振度的变化与聚束效应无关。一般,偏振度与流量密度的强负相关现象可以用喷流成分+激波成分的双成分模型来解释:在喷流成分与激波成分的偏振角相互垂直并且偏振度基本相同的情况下,激波在喷流中的传播产生了这些偏振度与流量密度的强负相关性。  相似文献   

14.
VLBI total intensity and linear polarization images of the BL Lacertae object OJ 287 have been obtained at     using a global ground array and the HALCA orbiting antenna, and at     two weeks earlier using the VLBA. In the ground-based 6-cm images, the source is dominated by a core–jet double structure the components of which are essentially unresolved. The baselines to the orbiting antenna resolve both of these compact components. In the VSOP images, the ground-based 'core' breaks up into several distinct components, demonstrating that this region is dominated by the contribution of bright, optically thin knots of jet emission. A very similar structure is observed in the 1.3-cm image. The magnetic field in the core is transverse, becomes longitudinal in the inner jet, then makes a sharp transition to a region of transverse field further from the core. This suggests that the field in the outer jet has become highly ordered in the transverse direction owing to the action of a shock; the physical nature of the extended region of longitudinal field closer to the core is not clear. The availability of nearly simultaneous observations with comparable resolution at widely spaced frequencies enabled detection of a ≃90° rotation in polarization position angle for the core, owing to the transition from the optically thick (6 cm) to the optically thin (1.3 cm) regime.  相似文献   

15.
In this paper we report on further observations of the third and fourth kilohertz quasi-periodic oscillations (QPOs) in the power spectrum of the low-mass X-ray binary (LMXB) 4U 1636−53. These kilohertz QPOs are sidebands to the lower kilohertz QPO. The upper sideband has a frequency  55.5 ± 1.7 Hz  larger than that of the contemporaneously measured lower kilohertz QPO. Such a sideband has now been measured at a significance  >6σ  in the power spectra of three neutron-star LMXBs (4U 1636−53, 1728−34 and 1608−52). We also confirm the presence of a sideband at a frequency ∼55 Hz less than the frequency of the lower kilohertz QPO. The lower sideband is detected at a 3.5σ level only when the lower kilohertz QPO frequency is between 800 and 850 Hz. In that frequency interval, the sidebands are consistent with being symmetric around the lower kilohertz QPO frequency. The upper limit to the rms amplitude of the lower sideband is significantly lower than that of the upper sideband for lower kilohertz QPO frequencies >850 Hz. Symmetric sidebands are unique to 4U 1636−53. This might be explained by the fact that lower kilohertz QPO frequencies as high as 800–850 Hz are rare for 4U 1728−34 and 1608−52. Finally, we also measured a low-frequency QPO at a frequency of ∼43 Hz when the lower kilohertz QPO frequency is between 700 and 850 Hz. A similar low-frequency QPO is present in the power spectra of the other two systems for which a sideband has been observed. We briefly discuss the possibility that the sideband is caused by Lense–Thirring precession.  相似文献   

16.
In this paper I propose that the inner part of a black hole accretion inflow (< 100 rg) may enter a magnetically dominated, magnetosphere-like phase in which the strong, well-ordered fields play a more important role than weak, turbulent fields. In the low/hard state this flow is interior to the standard ADAF usually invoked to explain the observed hot, optically thin emission. Preliminary solutions for these new MDAFs are presented. Time-dependent X-ray and radio observations give considerable insight into these processes, and a new interpretation of the X-ray power spectrum (as arising from many disk radii) may be in order. While an evaporative ADAF model explains the noise power above 0.01 Hz, an inner MDAF is needed to explain the high-frequency cutoff near 1 Hz, the presence of a QPO, and the production of a jet. The MDAF scenario also is consistent with the phenomonological models presented at this meeting by several authors.  相似文献   

17.
We study the polarization properties of relativistic reconfinement shocks with chaotic magnetic fields. Using our hydrodynamical model of their structure, we calculate synthetic polarization maps, longitudinal polarization profiles and discuss the spatially averaged polarization degree as a function of jet half-opening angle  Θ j   , jet Lorentz factor  Γ j   and observer inclination angle to the jet axis  θobs  . We find that for  θobs≲Θ j   the wave electric vectors are parallel in the vicinity of the structure ends and perpendicular in between, while for  θobs > Θ j   the polarization can only be perpendicular. The spatially averaged polarization degree does not exceed 30 per cent. Parallel average polarization, with polarization degrees lower than 10 per cent, has been found for  θobs < Θ j   under the condition  Γ j Θ j > 1  . As earlier works predicted the parallel polarization from relativistic conical shocks, we explain our results by discussing conical shocks with divergent upstream flow.  相似文献   

18.
Very long-baseline interferometry (VLBI) observations of the quasar 4C 71.07 (0836+710) at frequencies of 5 and 8.4 GHz at two epochs are used to investigate apparent misalignments between the magnetic field and jet direction found in this source. The observed polarization angles are not consistent with Faraday rotation of synchrotron radiation from an aligned magnetic field. Internal Faraday rotation in a uniform spherical source is also ruled out by the observations, and while the misalignments could result from internal Faraday rotation in a non-uniform source, no strong signatures of this effect were found. The jet shows two distinct kinks at which the ridge-line changes direction and then reverts to its original direction. The magnetic field in these regions is parallel to the jet, and remains so as the jet bends. It seems likely that the largest remaining misalignment is associated with another such kink that is unresolved by these observations. The percentage polarization decreases near the bright knots, consistent with enhancement in brightness by compressions in the plane normal to the jet axis. The inferred rotation measure is low (100 rad m−2) throughout the jet, as for other quasars. However near the core, the polarization position angles suggest a rotation measure that appears to be uncharacteristically low by comparison with other quasars.  相似文献   

19.
Estimates of magnetic fields for a number of active galactic nuclei are presented. These estimates are based on the observed polarization degrees and position angles of broad Hα lines and in the nearby continuum and on asymptotic analytical formulas for the Stokes parameters of the radiation emerging from a magnetized accretion disk (the Milne problem in a magnetized atmosphere). The characteristic observed feature of the wavelength dependence of the polarization degree inside the line—a minimum at the center and a fast increase of the position angle from one wing to another—can be explained by the superposition of resonance emission from two or more clouds located in the right (Keplerian velocity directed away from the observer) and left (Keplerian velocity directed toward the observer) parts of the orbit in the rotating magnetized accretion disk. The main component in our mechanism is the azimuthal magnetic field in the disk. The presence of a magnetic field perpendicular to the disk plane (which is usually weaker than the azimuthal field) results in the asymmetry of the distribution of the polarization degree and position angle inside the line. The inferred magnetic field strengths at the galactocentric distances where broad lines are emitted can be used to estimate the magnetic fields in the region of the centermost stable orbit and at the horizon of the central black hole, using the power-law dependence of the magnetic field strength corresponding to the standard model of the accretion disk.  相似文献   

20.
The majority (maybe all) of proposed relativistic and non-relativistic models for variable extragalactic radio sources are based on the same general ideas proposed in the early model by Shklovsky (1960, 1965) – in particular, that the variability is caused by the synchrotron emission of magnetized clouds during their expansion. This model was a "standard" or "canonical" model for more than 20 years. One of the models that uses its ideas and approach is the "hedgehog" model, in which clouds or jets emit and expand in the strong external radial magnetic field of the nucleus of the source. This model has been suggested for a long time, but recent new results comparing it's predictions with observations of multifrequency spectra – especially, instantaneous spectra of many variable sources – and with the typical VLBI structure of compact objects have given strong new arguments in it's favour. The nature of the variability can be satisfactory explained by the hedgehog jet model for many variable and compact extragalactic radio sources. Thus, following up the ideas of I.S. Shklovsky, we conclude that the observed spectra and structure of compact sources can be caused by the synchrotron emission of a quasi-stationary jet in a longitudinal magnetic field, and the nature of variability can be explained by the variable ejection of the continious jet from the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号