首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The self-gravitational instability of an ionized, thermally-conducting, magnetized, rotating plasma flow through a porous medium has been studied in the presence of suspended particles. The ionized gas-particle medium has been considered rotating along and perpendicular to the vertical magnetic field. Propagation of the plasma waves has been studied for the longitudinal and the transverse modes for both the cases of rotation. A general dispersion relation has been derived with the help of relevant perturbation equations, using the method of normal mode analysis. The Jeans criterion determines the condition of gravitational instability in all the cases with some modifications introduced by the various parameters considered. Thermal conductivity replaces the adiabatic sonic speed by the isothermal one. Considering the longitudinal mode of propagation with perpendicular rotational axis, for an inviscid plasma with adiabatic behaviour the effect of both, the rotation and the suspended particles has been removed by the magnetic field. For the transverse mode of propagation with the axis of rotation parallel to the magnetic field, the viscosity removes the effect of both, the rotation and the suspended particles. Porosity reduces the effect of both, the rotation and the magnetic field, whereas the concentration of the suspended particles reduces the rotational effect.  相似文献   

2.
The gravitational instability of an infinite homogenous rotating plasma through a porous medium in the presence of a uniform magnetic field with finite electrical and thermal conductivities has been studied. With the help of relevant linearized perturbation equations of the problem, a general dispersion relation is obtained, which is further reduced for the special cases of rotation, parallel and perpendicular to the megnetic field acting in the vertical direction. Longitudinal and transverse modes of propagation are discussed separately. It is found that the joint effect of various parameters is simply to modify the Jeans's condition of instability. The effect of finite electrical conductivity is to remove the effect of magnetic field where as the effect of thermal conductivity is to replace the adiabatic velocity of sound by the isothermal one. Rotation has its effect only along the magnetic field in the transverse mode of propagation for an inviscid plasma, thereby stabilizing the system. Porosity reduces the effect of both, the magnetic field and the rotation, in the transverse mode of propagation in both the cases of rotation. The effect of viscosity is to remove the rotational effects parallel to the magnetic field in the transverse mode of propagation.  相似文献   

3.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

4.
Magnetogravitational instability of a thermally-conducting, rotating plasma flowing through a porous medium with finite conductivity and finite Larmor radius in the presence of suspended particles has been investigated. The wave propagation has been considered for both parallel and perpendicular axes of rotation. Magnetic field is being taken in the vertical direction. A general dispersion relation has been derived through relevant linearized perturbation equations. It has been observed that the condition of instability is determined by the Jeans's criterion in its modifed form. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one. Rotation decreases the Larmor radius. Porosity decreases the Alfvén velocity. In case of a viscous medium the effects of FLR, rotation, and suspended particles are not observed in the Jeans's condition, for transverse propagation for rotational axis parallel to the magnetic field. The effects of rotation and FLR are decreased by the porosity and the suspended particles. Finite conductivity removes the Alfvén velocity from Jeans's condition.  相似文献   

5.
Wave propagation is considered in self-gravitating collisionless magnetized plasma, when the Larmor frequency exceeds the plasma frequency. The external magnetic field is assumed to be strong and a modified two-fluids theory is used to describe the plasma. We find that there are three modes of wave propagation parallel to the magnetic field. The condition of hose instability is affected. The change in the dispersion relation due to the two-fluids theory is also discussed.  相似文献   

6.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

7.
Examination of thermal plasma data obtained by low-altitude satellite measurements indicates that the intersection of the cusp in the dayside magnetosphere with the topside ionosphere creates a distinct plasma geometry at low altitudes. This region consists of one or two plasma discontinuities with steep boundaries. As a result of the plasma structuring in the cusp which commonly takes place in the winter hemisphere, the propagation of compressional surface MHD waves is supported. This point is illustrated by an analysis of the polarization state of compressional surface MHD waves propagating along a plasma layer with thickness a and ambient magnetic field B0 parallel to the interfaces. The results obtained are applicable to the case of a single interface, which is derived in the limit a → ∞. In the general case the polarization of the compressional surface MHD waves in the plane transverse to the magnetic field B0 is elliptical. This feature of the polarization state of the compressional surface modes does not follow from the former analysis by Edwin and Roberts (1982, Solar Phys. 76, 239) for a magnetic slab, because the disturbance components parallel to the interfaces and perpendicular to the magnetic field B0 have not been examined. Although the absence of these components does not prove to be essential for deriving the exact dispersion equation for arbitrary wave directions of the surface modes, they must be included when considering polarization states. The surface mode polarization in the plasma layer changes its sense three times: at interfaces X = 0 and X = a and in the middle plane X = a/2. For the symmetrical (sausage) mode the wave disturbance component bn transverse (normal) to the interfaces becomes zero in the middle plane; for the asymmetrical (kink) mode, the component bt parallel to the interfaces and transverse to the ambient magnetic field is zeroed in the same plane. For a moving observer such as a satellite the polarization patterns which might be recorded change, depending on the velocity of the observer and the angles at which the layered cusp is traversed. An essential feature in the polarization of the compressional surface MHD modes is the presence of jumps in the magnetic disturbance component bt at the interfaces. These jumps disappear only for propagation along the ambient magnetic field. In this particular case the component bt vanishes and then the surface modes are undistinguishable from the body modes.  相似文献   

8.
The effect of rotation on the self-gravitational instability of an infinite homogeneous magnetised gas-particle medium in the presence of suspended particles is investigated. The conductivity of the medium is assumed to be finite. The equations of the problem are linearized and the general dispersion relation is obtained. The rotation is assumed along two different directions separately and separate dispersion relation for each case is obtained. The dispersion relation for propagation parallel and perpendicular to the uniform magnetic field along with rotation is derived. It is found that in presence of suspended particles, magnetic field, finite conductivity, rotation and viscosity, Jeans's criterion determines the condition of gravitational instability of gas-particle medium.  相似文献   

9.
The Rayleigh-Taylor instability of the plane interface separating the two partially-ionized superposed fluids through porous medium is analysed. The effect of variable horizontal magnetic field, surface tension and rotation along the vertical axis are also incorporated. The relevant linearized perturbation equations are taken and using normal mode analysis the general relation is obtained from which the dispersion relation for two superposed fluids of different densities is derived. It is found that the surface tension and horizontal magnetic field have the stabilizing effect on the R-T-instability. The condition of instability remains unaffected by the permeability of porous medium, presence of neutral particles in the fluids and rotation.It is concluded that the system is unstable only for those positive wave numbers which are less than certain critical value in case of an adverse density gradient.  相似文献   

10.
A complete dispersion relation for a whistler mode wave propagation in an anisotropic warm ion-electron magnetoplasma in the presence of parallel electric field using the dispersion relation for a circularly polarized wave has been derived. The dispersion relation includes the effect of anisotropy for the ion and electron velocity distribution functions. The growth rate of electron-ion cyclotron waves for different plasma parameters observed atL = 6.6R E has been computed and the results have been discussed in detail in the light of the observed features of VLF emissions and whistlers. The role of the combination of ion-cyclotron and whistler mode electromagnetic wave propagation along the magnetic field in an anisotropic Maxwellian weakly-ionized magnetoplasma has been studied.  相似文献   

11.
It is generally believed that the heating of the solar corona is caused by waves originating in the photosphere and propagating into the corona where their energy is dissipated. The medium through which these waves propagate is in general permeated by magnetic fields complicating the behaviour of this propagation considerably. We have therefore analysed the wave motions in a plasma permeated by constant magnetic and gravitational fields. In general, three waves modes were found, which we called the + mode, –mode, and the Alfvén mode. Each mode was found to be strongly coupled to each of the three kinds of motion; acoustic, gravity, and hydromagnetic. However, the Alfvén mode was found to be separable from the dispersion relation, and therefore independent of compressibility and gravity. The local dispersion relation is derived and expressed in nondimensional form independent of the constants that describe a particular atmosphere. From the dispersion relation one can show that rising waves propagate either with a constant or a growing wave amplitude depending on the magnitudes and directions of the gravitational field, magnetic field, and the wave vector. The variation of the density with height is taken into account by a generalized W.K.B. method. Equations are found which give the height at which wave reflection occurs, giving the upper bound for possible wave propagation.Work supported by the National Aeronautics and Space Administration under Research Grant NGR-29-001-016.On leave of absence from the Desert Research Institute and Department of Physics, University of Nevada, Reno, Nevada, U.S.A.  相似文献   

12.
The dispersion law for the propagation of waves in cold magnetized plasmas is derived for arbitrary directions of the rotation axis with respect to the static magnetic field. The waves are shown to be stable, not only in the case of a cold plasma, but in any plasma case which yields hermitian mobility tensors. An interesting special case is when the rotation and magnetization axes are parallel, because then for suitable values of rotation and external magnetic field the two effects can cancel each other, though only for one plasma species at the time. The rotation thus decisively affects and shifts the number and width of the existing pass- and stop-bands in a magnetized plasma. The inclusion of thermal effects through a scalar barotropic pressure is not nearly as significant.  相似文献   

13.
The problem of stability of an unbounded anisotropic plasma characterized by different temperatures along and transverse to the magnetic field is investigated for an arbitrary direction of propagation. Chewet al (1956) equations modified to incorporate self-gravitation, finite ion Larmor radius (FLR) and Hall current are used. Uniform rotation (of an order of interest in astrophysics) is also considered. Extensive numerical treatment of the dispersion relation leads to several interesting results.Inclusion of FLR, or Hall current or both together introduces pulsational instability for prepagation parallel to the magnetic field. The aperiodic growth rate of the mirror instability is only slightly altered due to FLR or Hall current effects. In the absence of rotation, self-gravitation, FLR and Hall current, the growth rate decreases for the mirror region as the direction of propagation approaches the field direction, while the fire hose instability persists for arbitrary propagation, even in the limiting case (the mirror limit) where the propagation is nearly transverse to the magnetic field. Uniform rotation altogether stabilizes the fire hose instability for a sufficiently strong pressure (or temperature) anisotropy. Pulsational instability is introduced when both ratation and self-gravitation effects are present. Either FLR or Hall current depresses the growth rate of the fire hose instability and introduces pulsational instability for the general case of arbitrary propagation. When FLR and Hall current effects are present simultaneously, the interaction terms due to these effects may be strongly destabilizing in nature for arbitrary propagation.  相似文献   

14.
The linear self-gravitational instability of finitely conducting, magnetized viscoelastic fluid is investigated using the modified generalized hydrodynamic (GH) model. A general dispersion relation is obtained with the help of linearized perturbation equations using the normal mode analysis and it is discussed for longitudinal and transverse modes of propagation. In longitudinal propagation, we find that Alfven mode is uncoupled with the gravitating mode. The Jeans criterion of instability is determined which depends upon shear viscosity and bulk viscosity while it is independent of magnetic field. The viscoelastic effects modify the fundamental Jeans criterion of gravitational instability. In transverse mode of propagation, the Alfven mode couples with the acoustic mode, compressional viscoelastic mode and gravitating mode. The growth rate of Jeans instability is compared in weakly coupled plasma (WCP) and strongly coupled plasma (SCP) which is larger for SCP in both the modes of propagations. The presence of finite electrical resistivity removes the effect of magnetic field in the condition of Jeans instability and expression of critical Jeans wavenumber. It is found that Mach number and shear viscosity has stabilizing while finite electrical resistivity has destabilizing influence on the growth rate of Jeans instability.  相似文献   

15.
The effects of arbitrary radiative heat-loss functions and Hall current on the self-gravitational instability of a homogeneous, viscous, rotating plasma has been investigated incorporating the effects of finite electrical resistivity, finite electron inertia and thermal conductivity. A general dispersion relation is obtained using the normal mode analysis with the help of relevant linearized perturbation equations of the problem, and a modified Jeans criterion of instability is obtained. The conditions of modified Jeans instabilities and stabilities are discussed in the different cases of our interest. We find that the presence of arbitrary radiative heat-loss functions and thermal conductivity modifies the fundamental Jeans criterion of gravitational instability into a radiative instability criterion. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. For longitudinal propagation, it is found that the condition of radiative instability is independent of the magnetic field, Hall parameter, finite electron inertia, finite electrical resistivity, viscosity and rotation; but for the transverse mode of propagation it depends on the finite electrical resistivity, the strength of the magnetic field, and it is independent of rotation, electron inertia and viscosity. From the curves we find that the presence of thermal conductivity, finite electrical resistivity and density-dependent heat-loss function has a destabilizing influence, while viscosity and magnetic field have a stabilizing effect on the growth rate of an instability. The effect of arbitrary heat-loss functions is also studied on the growth rate of a radiative instability.  相似文献   

16.
The linearized theory for the parallel propagation of magnetoacoustic-gravity surface waves is developed for an interface of a horizontal magnetic field above a field-free medium. The media either side of the interface are taken to be isothermal. The dispersion relation is obtained for the case of a constant Alfvén speed. In the absence of gravity the interface may support one or two surface modes, determined by the relative temperatures and magnetism of the two media. The effect of gravity on the modes is examined and dispersion diagrams and eigenfunctions are given. In the usual - k x diagnostic diagram, the domain of evanescence is shown to be divided into two distinct regions determining whether a given mode will have a decaying or growing vertical velocity component. In the absence of a magnetic field the transcendental dispersion relation may be rewritten as a polynomial. This polynomial possesses two acceptable solutions only one of which may exist in any given circumstances (depending on the ratio of the densities). If the gas density within the field exceeds that in the field-free medium, then the f-mode may propagate. The f-mode exists in a restricted band of horizontal wavenumber and only when the field-free medium is warmer than the magnetic atmosphere. An analytical form for the wave speed of the f-mode is obtained for small values of the Alfvén speed. It is shown that the f-mode is related to the fast magnetoacoustic surface wave, merging into that mode at short wavelengths.  相似文献   

17.
In this paper, we study the conditions of realization and stability of kink modes with azimuthal wave numbers m = ±1 in a cylindrical plasma filament with a twisted magnetic field and a homogeneous current along its axis. We assume that there are vertical constant magnetic fields inside and outside of the filament; the filament is surrounded by current-free plasma; and outside of its boundary, the azimuthal magnetic field decreases inversely in proportion to the distance from the filament’s border. The dispersion equations for stable and unstable modes are obtained in the approximation of “thin” plasma filament. The analysis of the equations for the case of discontinuous vertical magnetic field at the filament’s boundary is provided. The conditions of propagation of the wave modes have been defined. We have obtained that the unstable modes with m = ±1 cannot be realized. The results of this work can be applied to the interpretation of the solar magnetic flux tubes’ behavior using measurements provided by the spacecrafts.  相似文献   

18.
A discussion of gravitational instability of a finitely conducting medium with streams of variable velocity distribution is made in the presence of a uniform magnetic field. It is found that the variable streaming motion shows a destabilizing effect and affects the instability criterion only in the case of general wave propagation. For purely parallel propagation to the direction of the magnetic field and the streaming motion, the criterion is independent of the variation in the streaming motion and further the Jeans's criterion is found to remain unaffected in this case. For purely transverse propagation, the criterion is independent of any streaming motion and the Jeans's criterion remains unaffected. The criterion is further independent of the magnetic field and the finite conductivity except in the case of transverse propagation where the magnetic field exhibits a stabilizing influence in case of an infinitely conducting medium.  相似文献   

19.
In electron-positron plasmas the charge-to-mass ratio is the same for both species. This leads for different waves to the vanishing of certain coefficients in the dispersion laws and nonlinear evolution equations, and also to the decoupling of some of the plasma modes. In particular, there is a low-frequency mode which exists at all angles of propagation with respect to the static magnetic field, corresponding at parallel propagation to a degenerate case of circularly polarized waves, and at perpendicular propagation to part of the extraordinary mode. The nonlinear evolution of this generalizedX-mode is governed by a Korteweg-de Vries equation, valid at all angles of propagation except strictly parallel propagation, for which a different approach had been given already. The nonlinearity is strongest at perpendicular propagation.  相似文献   

20.
The magneto-gravitational instability of an infinite, homogenous, and infinitely conducting plasma flowing through a porous medium is studied. The finite ion Larmor radius (FLR) effects and viscosity are also incorporated in the analysis. The prevalent magnetic field is assumed to be uniform and acting in the vertical direction. A general dispersion relation has been obtained from the relevant linearized perturbation equations of the problem. The wave propagation parallel and perpendicular to the direction of the magnetic field have been discussed. It is found that the condition of the instability is determined by the Jeans criterion for a self-gravitating, infinitely conducting, magnetized fluid through a porous medium. Furthermore, for transverse perturbation FLR is found to have stabilizing influence when the medium is considered inviscid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号