首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Spilites from the Carlsberg Ridge, Indian Ocean   总被引:2,自引:0,他引:2  
A dredge haul from 5°N. on the Carlsberg Ridge brought upa collection of rocks that form a coherent spilitic series.Different specimens are identified with the various parts ofa spilitic pillow lava pile; some with pillow cores, otherswith pillow margins, and yet others with the material interstitialto the pillows. Their mineralogy is of greenschist facies. Comparisonwith the fresh basalt pillow lavas of the oceans suggests thatthese spilites were formed from the basalts by low-grade metamorphism,and were neither the product of the reaction of hot basalt withsea water nor that of the crystallization of a special spiliticmagma. The pillow cores, consisting of an albite-chlorite-augite-sphene-(actinolite-epidote)assemblage are contrasted strongly with the pillow margins,composed principally of chlorite, and this contrast seems tobe controlled by the original basalt mineralogy. Calcic plagioclasehas been replaced by albite, augite may remain or may be replacedby actinolite, iron ore has been replaced by sphene, and botholivine and basalt-glass by chlorite. Thus the pillow margins,originally almost entirely glassy, are now chemically very differentfrom the originally crystalline pillow cores. This process has involved a large-scale local transport of materialbetween core and margin of the pillows. The degree of this transportcan be closely estimated because the convergent compositionof deep-ocean basalts, especially strong in this region, meansthat the composition of the basalt from which the spilite hasformed is very well known. The hypothesis that the bulk compositionof the lava pile has remained constant during the transformationto spilite can also be tested, and it appears that it does nothold. Significant amounts of CaO and A12O3 must have been lostfrom the pile, and a large amount of water gained by it. Theremay or may not have been significant gains in SiO2, total Feand Na2O. The contrast of this kind of process with the isochemicalmetamorphism more normal in metamorphic terrains is ascribedto the effect of shear on the rates of nucleation of the differentphases.  相似文献   

2.
Petrogenesis of Franciscan pillow basalts from the Franciscan Complex of western Marin County California entails both dynamic crystallization of tholeiitic magma and subsequent low-temperature metamorphism. Brittle deformation during tectonic emplacement of pillow basalts into a chert greywacke terrain is manifested by the shearing of interpillow matrix and polishing of pillow rims, but the igneous textures within pillows are well preserved.The cooling history of pillow basalts can be understood through analysis of morphologic variations of primary olivine and plagioclase from rim to core of the pillow. Crystal sizes and plagioclase dendrite spacings are consisted with a cooling rate which generally decreases inward. Some pillows show a marked asymmetry in plagioclase and olivine morphology suggesting lower cooling rates caused by asymmetric cooling of the pillows. Olivine morphologies, primarily hopper and chain forms, are consistent with cooling rates of 2–10 °C/h for pillow cores and 50–75 °C/h for pillow rims.Low temperature hydrothermal alteration has produced secondary minerals indicative of zeolite facies conditions. Pillow matrix is either chloritic or zeolitic (in part laumontized). Pillow rims display incomplete replacement of calcic palagonite by pumpellyite (Fe2O3=9–21 wt%), prehnite (Fe2O3=5–7 wt%), sphene and quartz. Metamorphism of pillow interiors, manifested by: (1) veins of quartz, pumpellyite, calcite, or harmotome (BaO=15 wt%); (2) amygdules containing analcime, chlorite or quartz; and (3) replacement of olivine by pumpellyite or smectite/illite, of plagioclase by albite (An3)+sericite, and of glassy groundmass by fine-grained chlorite. Primary augite (Wo339En13Fs48) was not altered. The described paragenesis may be attributed to oceanfloor and/or Franciscan-type metamorphism.  相似文献   

3.
Determination of the two-dimensional finite strain in turbidite bedding surfaces is important in both structural and sedimentological investigations of deformed sediments. The Meguma Group of Nova Scotia is one such sequence, in which the directional distribution of paleocurrent markers has been modified by strain. Previous strain determinations have used sand volcanoes as strain markers, which do not deform homogeneously with their matrix and, hence, may underestimate the true strain ratio. Intraclasts and concretions also suffer inhomogeneous deformation and are of limited use as strain markers. Hexagonal trace fossil networks can provide more reliable strain estimates but are rare. Widths of burrows exposed on bedding surfaces provide a new, straightforward means of measuring strain. Each burrow is represented by a pair of parallel lines. The separation of the lines is proportional to the burrow width, and their direction represents burrow orientation. The lines are tangential to the strain ellipse, which can be discerned despite initial scatter in burrow widths.  相似文献   

4.
Large amounts of fluid, bound up in the hydrated upper layers of the ocean crust, are consumed at convergent margins and released in subduction zones through devolatilization. The liberated fluids may play an integral role in subduction zone processes, including the generation of arc-magmas. However, exhumed subduction zone rocks often record little evidence of large-scale fluid flow, especially at deeper levels within the subduction zone. Basaltic pillows from the high-pressure Corsican and Zermatt-Saas ophiolites show a range of δ18O values that overall reflect seafloor alteration prior to subduction. However, comparison between the δ18O values of the cores and rims of the pillows suggests that the δ18O values of the pillow rims at least have been modified during subduction and high-pressure metamorphism. Pillows that have not undergone high-pressure metamorphism generally have rims with higher δ18O values than their cores, whereas the converse is the case in pillows that have undergone high-pressure metamorphism. This reversal in the core to rim oxygen isotope relationship between unmetamorphosed and metamorphosed pillows is strong evidence for fluid–rock interaction occurring during subduction and high-pressure metamorphism. However, the preservation of different δ18O values in the cores and rims of individual pillows and within and between different pillows suggests that fluid flow within the subduction zone was strongly channelled. Resetting of the δ18O values in the pillow rims was probably due to fluid-hosted diffusion that occurred over relatively short time-scales (<1 Myr).  相似文献   

5.
Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress–strain relation the Young’s modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress–strain behaviour of geological materials. The influence of bedding on the stress–strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.  相似文献   

6.
Strain analyses of slates commonly investigate the sequence of shapes that must have been superimposed to produce the observed strained state. Methods such as Rf/? try to quantify the cleavage-forming deformation and ‘see through’ that component to examine any initial shape. An alternative approach is to reverse this process by considering the variation in final shapes derived when plausible cleavage-forming strain ellipsoids are superimposed on realistic initial shapes. Specifically, a deformation involving both plane strain and volume loss may be superimposed on an initial shape formed by diagenetic flattening. In this case the angle between bedding and the incipient cleavage plane is an important variable in controlling final ellipsoid shapes.This approach has been adopted for a data set measured from the Ordovician Borrowdale Volcanics in the English Lake District. Results show that neither successive increments of plane strain without volume loss nor incremental plane strain plus volume loss adequately explain the observed pattern of final shapes. One permissible solution is generated if increments of pure volume loss perpendicular to the incipient cleavage plane precedes plane-strain distortion. Initial layer-parallel shortening may therefore play an important part during cleavage development in these slates.  相似文献   

7.
通过对26口井岩心观察,结合区域构造背景,在鄂尔多斯盆地富县探区三叠系延长组中识别出典型的震积岩。该区震积岩代表性沉积构造有液化砂脉、液化卷曲变形、环状层理、负载构造、球枕构造、微断层、微裂缝、震裂岩与震碎角砾岩,其中液化砂脉和液化卷曲变形是地震引起的主要软沉积变形构造。震积岩垂向序列划分为两类:一种以脆性变形为主,自下向上依次为下伏未震层,扰动层,微断层、微裂缝及震裂岩层段,液化卷曲变形层段,震碎角砾岩层段,液化砂脉层段及上覆未震层;另一种以软沉积变形为主,自下至上依次为下伏未震层,环状层段,扰动层,球枕构造及负载构造层段,液化砂脉及液化卷曲变形层,枕状层及上覆未震层。富县探区延长组中的震积岩说明在该盆地晚三叠世存在一个强地震事件活跃期;震积岩中的微裂缝、微断层、震裂岩及液化砂脉可改善储集层物性,同时震碎角砾岩和网状砂脉也是良好的储集层。  相似文献   

8.
A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés nappe at Défilé du Lancône in Alpine Corsica. The fine‐grained eclogitized pillow lava and inter‐pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter‐pillow matrix consist of zoned idiomorphic Mg‐poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth‐type zoning with a Mn‐rich core. In the inter‐pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter‐pillow matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter‐pillow matrix contains cross‐cutting omphacite‐rich veinlets with zoned omphacite, Si‐rich phengite (Si = 3.54 apfu), ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter‐pillow matrix and the cross‐cutting veinlets indicate similar P–T conditions with maximum pressures of 1.9–2.6 GPa at temperatures of 335–420 °C. The inclusion suite found in garnet from the inter‐pillow matrix apparently formed at pressures below 0.6–0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold environment during exhumation, resulting in a hairpin‐shaped P–T path.  相似文献   

9.
Facing directions represent an accurate means by which tectonic structure and sedimentary way-up may be related. A simple method is presented for determining facing directions accurately, using a stereonet. Once determined, larger amounts of facing data can be quickly collated and analysed using similar techniques to those employed for other lineations. An example is given for some sheath fold structures in the Moine rocks of Sutherland, N. Scotland.  相似文献   

10.
Individual rounded pebbles of schist or foliated gneiss included in a conglomerate can each be used as strain markers when the conglomerate has been deformed subsequently. The shape, orientation and the attitude of the earlier schistosity within a single pebble allow one to determine the strain ratio assuming passive behaviour during deformation. The method may also be applicable to certain individual lava pillows containing paleo-horizontal “lava-level” markers.  相似文献   

11.
Weakly deformed mudstone and siltstone (Middle Ordovician Knobs Formation) of the Appalachian Valley and Ridge Province, south-western Virginia, U.S.A. show strain-dependent transitions between bedding fissility, pencil structure and cleavage. Pencil structures are associated with a bulk inhomogeneous shortening deformation where minimum principal strain (Z) ranges between 9 and 26% shortening (assuming a plane strain and constant volume). Where strains are less, bedding fissility dominates. Pencil fragments are defined by intersecting fracture sets subparallel to the pre-existing bedding fissility and cleavage. Their long axes are both parallel to the bedding-cleavage intersection and to the inferred Y axis of the tectonic strain ellipsoid. Pencil development is considered to result from fracturing along both fabric anisotropies during weathering and post-tectonic stress relaxation. Pencils show variations in size and shape depending on lithology (grain size and composition), degree of initial clay preferred orientation, degree of cleavage development, type of cleavage, total bulk strain and degree of strain homogeneity. Their shape (l/w) however is a direct measure of total Y/Z strain since strain determinations from chlorite pressure-fringes on framboidal pyrite within the pencil fragments give
(YZ) = 0.913 + 0.019 (l/w)
. Pencil structure is therefore a potential strain marker in weakly deformed rocks.  相似文献   

12.
JOHN SIMPSON 《Sedimentology》1985,32(4):495-505
It is often assumed that layering in many shelf and platform limestones at weathered outcrop is always bedding: the layers always beds, and the surfaces always bedding planes. Recognition of bedding is fundamental to facies and basin analysis. Examination of part of the Lower Carboniferous High Tor Limestone of the Gower, South Wales, shows that a totally diagenetic layering (pseudo-bedding) resembling, and parallel to primary depositional layering (true bedding), has been produced by the generation of parallel, more or less evenly-spaced stylolite surfaces during burial diagenesis. These stylolite surfaces are picked out by weathering at outcrop and resemble bedding planes. Evidence that the stylolite surfaces do not mark original bedding planes includes: a cross-cutting relationship of a stylolite surface to a primary bedding surface; lack of lithological change across, or sedimentary structures associated with, a stylolite surface; original bedding that is not coincident with stylolite surfaces and has not suffered pressure-dissolution; and lack of sedimentological evidence that the layers defined by the stylolite surfaces are true primary depositional beds. The generation of parallel and more or less evenly-spaced stylolite surfaces could be explained by a mathematical-kinetic model based on the relationship between pressure-dissolution, diffusion, and reprecipitation. Recognition of true bedding depends upon presence of lithological changes and/or sedimentary structures. It is suggested that pseudo-bedding could be confused with true bedding in some open platform/shelf lagoon facies where lithological changes or sedimentary structures are scarce or absent.  相似文献   

13.
Hydrothermal alteration of oceanic basalts by seawater   总被引:1,自引:0,他引:1  
Hydrothermally altered pillow basalts dredged from the Mid-Atlantic Ridge, and belonging to the greenschist facies, have been studied in order to determine the mineralogical and corresponding chemical changes, that result from basalt-seawater interaction at elevated temperatures.The mineralogical transformations are predominantly to albite-actinolite-chlorite-epidote assemblages. Quartz and pyrite are common accessory minerals. On the basis of their mineralogy, the samples may be divided into chlorite-rich and epidote-rich assemblages. The chlorite-rich assemblages, which are the predominant variety, show the greatest chemical changes, while the epidote-rich samples show very little change in composition compared with their basaltic precursors.Mass balances across individual pillows in which the central portions are relatively unaltered allow the directions and ranges of elemental fluxes to be calculated. In general, SiO2 and CaO are leached from the basalt, while MgO and H2O are taken up. No consistent trends are observed for Na2O and K2O although they do show some variations in the core-and-rim analyses.Consideration of the elemental fluxes in terms of steady-state geochemical mass balances for oceanic inputs and outputs indicates that hydrothermal alteration provides a sink for Mg, which may be extremely important in solving the problem of apparent excess Mg input to the oceans. The amount of Ca that is leached from the rock may be of significance in the geochemical budget of that element. The amount of SiO2 in the circulating fluid is controlled by the solubility of quartz or amorphous silica, depending on temperature, and considerable redistribution of silica takes place within the basaltic pile. The changes in redox conditions during hydrothermal alteration do not affect the present day oxidation state of the atmosphere and hydrosphere.  相似文献   

14.
The Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt in southern West Greenland includes variably deformed and metamorphosed pillow basalts, ultramafic flows (picrites), serpentinized ultramafic rocks, gabbros, sulphide-rich siliceous layers, and minor siliciclastic sedimentary rocks. Primary magmatic features such as concentric cooling-cracks and drainage cavities in pillows, volcanic breccia, ocelli interpreted as liquid immiscibility textures in pillows and gabbros, magmatic layering in gabbros, and clinopyroxene cumulates in ultramafic flows are well preserved in low-strain domains. The belt underwent at least two stages of calc-silicate metasomatic alteration and polyphase deformation between 2963 and 3075 Ma. The stage I metasomatic assemblage is composed predominantly of epidote (now mostly diopside) + quartz + plagioclase ± hornblende ± scapolite, and occurs mainly in pillow cores, pillow interstitials, and along pillow basalt-gabbro contacts. The origin of this metasomatic assemblage is attributed to seafloor hydrothermal alteration. On the basis of the common presence of epidote inclusions in diopside and the local occurrence of epidote-rich aggregates, the stage I metasomatic assemblage is interpreted as relict epidosite. The stage II metasomatic assemblage occurs as concordant discontinuous layered calc-silicate bodies to discordant calc-silicate veins commonly associated with shear zones. The stage II metasomatic assemblage consists mainly of diopside + garnet + amphibole + plagioclase + quartz ± vesuvianite ± scapolite ± epidote ± titanite ± calcite ± scheelite. Given that the second stage of metasomatism is closely associated with shear zones and replaced rocks with an early metamorphic fabric, its origin is attributed to regional dynamothermal metamorphism. The least altered pillow basalts, picrites, gabbros, and diorites are characterized by LREE-enriched, near-flat HREE, and HFSE (especially Nb)-depleted trace element patterns, indicating a subduction zone geochemical signature. Ultramafic pillows and cumulates display large positive initial εNd values of + 1.3 to + 5.0, consistent with a strongly depleted mantle source. Given the geological similarities between the Ivisaartoq greenstone belt and Phanerozoic forearc ophiolites, we suggest that the Ivisaartoq greenstone belt represents Mesoarchean supra-subduction zone oceanic crust.  相似文献   

15.
Taking the middle Pointe Indienne Formation of the Lower Cretaceous Barremian in the Lower Congo Basin as an example,based on the theory of deep-water sedimentology,combined with the latest research progress of gravity-flow,and with the help of the latest drilling core data and its analyzing test results in the study area,the lithology,sedimentary structure types and petrological characteristics were investigated. It is found that gravity-flow deposits were widely developed in the middle Pointe Indienne Formation of the study area. The deposition process and the conceptual model of sand-body development for the deep-water gravity-flow have also been summarized. The gravity-flow deposits are mainly composed of midium-fine grained sandstone where the flute cast,load cast,flame structure,ball and pillow structure are occurred at the bottom and the normal graded bedding,parallel bedding,climbing ripple bedding,convolute bedding,water escape structure and floating mud gravel are occurred in the internal part. The gravity flow sandstones whose transportation mechanism are dominated by suspension transport are mainly feldspathic detrital quartz sandstones which are poorly sorted,sub angular and sub rounded. Grainsize accumulation probability curve are characterized by both “one-segment” which suggests total suspension population and “two-segment” which suggests high suspension population. Five fluid types of gravity-flows including,slump,sandy debris flow,muddy debris flow and turbidity can be identified,and six styles of facies combination in vertical direction have been recognized. The gravity-flow sand-body in the study area can form large-scale oil and gas reservoir due to the better lateral continuity and the thicker vertical stack thickness.  相似文献   

16.
以下刚果盆地下白垩统巴雷姆阶Pointe Indienne组中段为例,采用深水沉积学理论,结合重力流的最新研究进展,利用研究区最新钻井岩心资料及分析测试数据,对其岩性、沉积构造类型和岩石学特征等进行了探讨分析,识别出研究区广泛存在重力流沉积,并总结了该重力流的深水沉积过程及其砂体发育概念模型。结果表明: 重力流沉积以中—细砂岩为主,砂岩底部发育槽模、重荷模、火焰状构造及球枕构造,砂岩内部有正粒序层理、平行层理、爬升波纹层理、包卷层理、泄水构造及漂浮泥砾;重力流砂岩主要为长石岩屑质石英砂岩,分选差、次棱—次圆状,以悬浮搬运机制为主,砂岩粒度累积概率曲线有全悬浮总体的“一段式”和高悬浮总体的“两段式”可识别出滑动、滑塌、砂质碎屑流、泥质碎屑流和浊流5种重力流流体类型及其在垂向上的6种相序组合类型;研究区重力流砂体横向连续性较好,垂向叠置厚度较厚,可形成规模较大的油气藏。  相似文献   

17.
Distal pillows occur associated with a sheet flow and megapillows in the me?akoz outcrops of the Basque–Cantabrian Basin (N Spain). Basaltic volcanic rocks are interbedded with Turonian sediments and depict typical features of shallow submarine emissions. An exceptional basaltic flow displays four types of morphology: (1) sheet lava with columnar jointing, (2) welded columnar breccia, (3) megapillows, and (4) pillow lavas with sparse megapillows. The field data from me?akoz combined with experimental and field data from the literature for similar volcanic facies can be integrated into a new propagation model for the transition from sheet flows to pillow lavas in underwater environments. At near vent high emission rates, lava flows develop a thin crust immediately after its emplacement and break at the front under the magma pressure allowing for the massive propagation of lava as a sheet flow. Increased cooling promotes thickening of the lava outer crust far from the vent while continuous supply of fresh magma increases the pressure onto the thick crust until its rupture. The lava emitted in small volumes from the flow front promotes the formation of megapillows and pillow lavas that are later on covered by the advancing sheet flow. The lava flow freezes progressively toward more distal parts, gradually increasing its viscosity until it stops. The crust temporarily holds the residual melt pressure increasing the volume of the flow distal section by inflation. Finally, the internal magma pressure breaks the crust and liberates lava at moderate-to-low flow rates producing pillows, while lava drainage inside the inflated sheet flow produces lava tunnels and gravitational collapse of the roofs by hydrostatic pressure to form breccias nurtured by columnar lava fragments.  相似文献   

18.
19.
Supracrustal rocks form a trough-like prolonged syncline surrounded by granitic rocks.They consist of quartz-feldspar schists (leptites) overlain by amphibolites. The stratigraphic succession in the syncline is as follows: undermost lie leptites followed by amphibolitic pillow lavas, which are gradually superseded by pillow breccias and agglomerates. A small area of polygonally jointed amphibolites lies above the pillow breccias. The succession gives the impression of volcanic activity in a gradually declining depth of water.The pillow lavas and agglomerates are commonly flattened or elongated and only locally undeformed. Elongation-type deformation is most pronounced in the agglomerates of the central parts of the syncline, where it now reaches its maximum breadth. The axial ratios of the elongated agglomerate fragments are approx. 2/3/75. Around the margins of the syncline the pillow lavas are strongly flattened. The most flattened pillows have axial ratios of approx 1/60/60.The flattening deformation in the adjacent leptitic rocks can be estimated from boudinage and folding in numerous pegmatite dikes. The estimated deformation in the leptites agrees reasonably well with the observed deformation in the adjacent pillow lavas.A gravitative sinking of the dense amphibolites into the underlying granitic material could possibly account for variations in the type of deformation within the syncline.  相似文献   

20.
Constitutive analysis of the mechanical anisotropy of Opalinus Clay   总被引:1,自引:0,他引:1  
This paper aims to analyse the anisotropic features of behaviour of Opalinus Clay using the theory of plastic multi-mechanisms. The results of triaxial tests conducted with different load levels and directions showed that the mechanical behaviour of this shale is cross-anisotropic. The stiffer samples are those in which the loading direction is parallel to the bedding plane. This indicates that the preconsolidation stress depends on the orientation of the load with respect to the fabric of Opalinus Clay. It is proposed to interpret the observed cross-anisotropy with an elastoplastic model based on four plastic strain mechanisms that may be successively mobilised depending on the loading direction. The predicted stress–strain responses vary according to the directions of the space as a result of the hardening process, depending on the number of plastic strain mechanisms that have been mobilised. The numerical predictions show overall good agreement with the experimental data in terms of deviatoric stress versus axial strain, demonstrating that multi-mechanism plasticity is a suitable constitutive tool for the interpretation of the mechanical anisotropy of this shale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号