首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assess the status of channel networks and pools of two tidal salt marshes recovering from more than a century of agricultural reclamation on the Bay of Fundy, Canada. A process of largely unmanaged restoration occurred at these sites since abandonment of agricultural activities during the first half of the twentieth century. Each recovering marsh was compared to a reference marsh that was never drained or ditched. We field mapped channel networks at all marshes and used aerial photographs to map the pre-abandonment channel network at one of the sites. The recovering marshes have hybrid channel networks that feature highly variable channel morphologies, loss of original channels, and incorporation of drainage ditches. Although channel networks in recovering marshes integrate agricultural ditches, the recovering marsh networks may not be substantially increased in length or density. Our aerial photograph analysis shows that channel density at one of the recovering marshes is comparable to the pre-abandonment density, but with reduced sinuosity. Field mapping of permanent tidal pools on the lower Bay marshes revealed that pools cover 13% of the recovering marsh, compared to ∼5% of the reference marsh. This study demonstrates that these essential marsh features can be regained through restoration or simple abandonment of drainage infrastructure.  相似文献   

2.
This study represents the first report on sediment accretion rates using137Cs dating for a southern California salt marsh. Vertical accretion rates ranged from 0.7 to 1.2 cm yr−1, which is at the high end of sediment accretion values for coastal wetlands. This has lead to increases in elevation within the estuary from 18 to 35 cm over the last 35 years. Depth profiles of metal concentrations were converted to time-based profiles using vertical accretion rates. Chronologies for most cores indicate a consistent peak in sediment lead (Pb) concentrations in the early to mid 1980s, corresponding to the historic decline in Pb use, which was completed in the U.S. by the early 1980s, but not begun in Mexico until 1991. Sediment Pb levels ranged from about 6–56 μg g−1. Other metals did not show any consistent trends in sediment chronology, except for a single core from a mid-marsh site (east-mid 2), which showed a 2–3-fold increase in levels of Cu, Ni, and Zn during the past two decades. Sediment levels of copper (Cu), nickel (Ni), and zinc (Zn) ranged from 6–34 μg g−1, 11–27 μg g−1, and 42–122 μg g−1, respectively. Despite rapid industrial development of the watershed, a comparison of the sediment metal concentrations in the Tijuana Estuary to other anthropogenically-impacted estuaries in the United States and Europe, shows that metal levels in sediments of the north arm of the estuary are relatively low.  相似文献   

3.
Macrotidal salt marshes play an important role in sedimentary processes in estuaries and can act as a sink for fine sediments and contaminants. This study examines sedimentation rates and the history of heavy metal accumulation in the Allen Creek salt marsh in the Bay of Fundy, Canada. Pb-210 and Cs-137 measurements and accelerated mass spectrometer (AMS) dating indicate a sedimentation rate of about 1.1 cm/year, which is consistent with independent observations. Elevated normalized concentrations of As in the upper section of the deposit may reflect an increase in organic matter content while a consistent decrease in Mn toward the surface of the section may be due to a decrease in natural supply. A peak in metal concentrations in the early to mid twentieth century is attributed to inputs from local foundries.  相似文献   

4.
Planimetry studies of coastal geology maps prepared by the Maine Geological Survey show that there is more than an order of magnitude more tidal marsh area in the state of Maine than documented in previously published estimates. The highly convoluted coast of Maine, which is approximately 5,970 km long, contains almost 79 km2 of salt marsh, far more than any other New England state, New York, or the Bay of Fundy region. Reasonable estimates for the per-unit primary productivity of salt marshes lead to projections of total marsh productivity on the order of 1010 g dry weight yr?1 for the Maine coast and 1011 g dry weight yr?1 for the Gulf of Maine as a whole. Distribution of tidal marsh area is strongly controlled by coastal geomorphology, which varies considerably along the coast of Maine. The salt marsh area is concentrated in the southwestern coastal region of arcuate bays, where marshes have developed behind sandy beaches. A series of long islands and bedrock peninsulas in the south-central portion of the coast also provides sheltered areas where large marshes occur. Northeast of Penobscot Bay salt marshes become more numerous and smaller in average areal extent. A lack of protection from waves, along with limited sources of glacio-fluvial and glacio-marine sediments, restricts the occurrence of salt marshes in that region to the frignes of coves and tidal rivers.  相似文献   

5.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

6.
Water and sediment samples were collected from 20 location of the Buriganga river of Bangladesh during Summer and Winter 2009 to determine the spatial distribution, seasonal and temporal variation of different heavy metal contents. Sequential extraction procedure was employed in sediment samples for the geochemical partitioning of the metals. Total trace metal content in water and sediment samples were analyzed and compared with different standard and reference values. Concentration of total chromium, lead, cadmium, zinc, copper, nickel, cobalt and arsenic in water samples were greatly exceeded the toxicity reference values in both season. Concentration of chromium, lead, copper and nickel in sediment samples were mostly higher than that of severe effect level values, at which the sediment is considered heavily polluted. On average 72 % chromium, 92 % lead, 88 % zinc, 73 % copper, 63 % nickel and 68 % of total cobalt were associated with the first three labile sequential extraction phases, which portion is readily bioavailable and might be associated with frequent negative biological effects. Enrichment factor values demonstrated that the lead, cadmium, zinc, chromium and copper in most of the sediment samples were enriched sever to very severely. The pollution load index value for the total area was as high as 21.1 in Summer and 24.6 in Winter season; while values above one indicates progressive deterioration of the sites and estuarine quality. The extent of heavy metals pollution in the Buriganga river system implies that the condition is much frightening and may severely affect the aquatic ecology of the river.  相似文献   

7.
Flooding of salt marshes controls access to the marsh surface for aquatic organisms and likely regulates the value and use of this habitat for juvenile fishery species. We examined geographic variability in marsh access by measuring tidal flooding characteristics in 15 Spartina alterniflora marshes in the southeastern US between South Texas and lower Chesapeake Bay. Flooding duration and flooding frequency were correlated with the elevation of the marsh edge in relation to mean low water and with the tidal range. Mean annual flooding duration over the years 2006–2008 was highest in Texas (91.5% in Aransas Bay) and North Carolina (89.3% in Pamlico Sound) and lowest in Timbalier Bay, LA (54%) and the lower Carolinas and Georgia (55–57%). We used published data on densities of blue crabs and penaeid shrimps as a measure of habitat selection, and there was a positive relationship between marsh selection and flooding duration.  相似文献   

8.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

9.
Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis of 24 sediment cores collected from ten intact southern San Francisco Bay tidal marshes were used to reconstruct spatio-temporal patterns of marsh expansion to provide historic context for current restoration efforts. A process-based marsh elevation simulation model was used to identify interactions between sediment supply, sea-level rise, and marsh formation rates. A distinct age gradient was found: expansion of marshes in the central portion of southern San Francisco Bay dated to 500 to 1500 calendar years before present, while expansion of marshes in southernmost San Francisco Bay dated to 200 to 700 calendar years before present. Thus, much of the tidal marsh area mapped by US Coast Survey during the 1853–1857 period were in fact not primeval tidal marshes that had persisted for millennia but were recently formed landscapes. Marsh expansion increased during the Little Ice Age, when freshwater inflow and sediment influx were higher than during the previous millennium, and also during settlement, when land use changes, such as introduction of livestock, increased watershed erosion, and sediment delivery.  相似文献   

10.
One year’s measurements of surficial sedimentation rates (1986–1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr?1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes.  相似文献   

11.
Tidal freshwater marshes exist at the interface between watersheds and estuaries, and thus may serve as critical buffers protecting estuaries from anthropogenic metal pollution. Bi-weekly samples of newly deposited marsh sediments were collected and analyzed for Cu, Zn, and Fe concentrations over 21 months from July 1995 to March 1997 in five distinct habitats at the head of Bush River, Maryland. Bi-weekly anthropogenic metal enrichments ranged from 0.9–4.7. Anthropogenic excess metal loadings averaged over 1996 ranged from 6–306 and 25–1302 μg cm−2 year−1 between sites for Cu and Zn, respectively. Based on Fe-normalized trace metal signatures, Susquehanna River sediment does not significantly contribute to upper Bush River. Organic matter was found to dilute total metal concentrations, whereas past studies suggested organics enhance labile metal content. Analysis of metal input pathways shows that marsh metals are primarily imported from nearby subtidal accumulations of historic watershed material by tidal flushing. Received: 29 April 1999 / Accepted: 7 December 1999  相似文献   

12.
We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.  相似文献   

13.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   

14.
The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento–San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age–depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year−1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.  相似文献   

15.
A study was conducted to investigate the trace metal pollution of water and sediments of downstream of Tsurumi River, Yokohama, Japan. Twenty samples of water and sediments were collected from the river starting from Tokyo bay side up to the junction point of the Yagami River. Results show that the mean concentrations of chromium, cupper and nickel in water greatly exceed (>100 times) the surface water standard. The concentration of molybdenum and lead was also higher than standard values while iron and manganese was lower than that of surface water standard. The mean concentration of zinc, cupper, cadmium, lead, chromium, vanadium, bromine and iodine was 381.1, 133.0, 1.0, 40.8, 102.9, 162.0, 71.5 and 10.6 μg/g sediments, respectively and was greatly exceed the average worldwide shale concentrations and average Japanese river sediment values. However, mean concentration of arsenic, nickel and strontium was 11.0, 36.6 and 164.6 μg/g sediments, respectively which was lower than the average shale value. Other analyzed trace metals, including barium, zirconium, rubidium, yttrium, tin, antimony, cesium, lanthanum, cerium, praseodymium and neodymium were detected in river sediments; the concentration of which was close to the Japan’s river sediment average values. Pollution load index values of the sites of the studied area ranged from 1.24 to 7.65 which testify that the river sediments are polluted. The PLI value of the area was, however, high (6.53) as the concentration of trace metals like zinc, cupper, cadmium, lead and chromium were very high and were the major pollutants.  相似文献   

16.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

17.
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3?±?0.24 mm year?1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2?±?0.52 mm year?1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment availability, salinity, and elevation capital. Together, these two systems provide critical insight into the relationships between marsh elevation, high marsh plant community, and changing hydroperiods. Our results highlight that not all marshes in Southern New England may be responding to accelerated rates of RSLR in the same manner.  相似文献   

18.
Coastal salt marshes represent an important coastal wetland system. In order to protect coastlines from erosion and rapid increase in accumulation rate, Spartina alterniflora (S. alterniflora) was introduced into the Chinese coast. Two study areas (Wanggang and Quanzhou Bay) were selected that represent the plain type and embayment type of the coastal salt marshes. In situ measurements show that the tidal current velocities are stronger on the intertidal mudflat without S. alterniflora than that with S. alterniflora, and the velocity above the canopy surface is larger than that in the salt marsh canopy. The existence of S. alterniflora also influences the velocity structure above the bare flat during ebb tide. With the decrease in current flow velocity when seawater enters into the S. alterniflora marsh, suspended sediments are largely entrapped on the marsh surface, leading to increase in sedimentation rates and change in physical evolution processes of the coastal salt marshes. The highly developed root systemof S. alterniflora induces sediment mixing and exchange between subsurface sediment strata and affects the vertical sediment distribution remarkably. The sedimentation rate of S. alterniflora marsh at the Wanggang area is much higher than the relative sea level rise rate, where rapid progradation of theWanggang saltmarshes that is protecting the coast from sea erosion is observed.  相似文献   

19.
In support of efforts to reconstruct relative sea level (RSL), we investigated the utility of foraminifera, diatoms and bulk‐sediment geochemistry (δ13C, C:N and parameters measured by Rock‐Eval pyrolysis) as sea‐level indicators in Eurasian sub‐Arctic salt marshes. At three salt marshes (<15 km apart) in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects from subtidal to Taiga forest environments. Foraminifera at all sites formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Five high‐diversity groups of diatoms were identified and they displayed pronounced variability amongst the study sites. Bulk‐sediment geochemistry recognized two groups (clastic‐dominated environments below MHHW and organic‐rich environments above MHHW). As one group included subtidal elevations and the other included supratidal elevations, we conclude that the measured geochemical parameters are not stand‐alone sea‐level indicators. Core JT2012 captured a regressive sediment succession of clastic, tidal‐flat sediment overlain by salt‐marsh organic silt and freshwater peat. The salt‐marsh sediment accumulated at 2804±52 years before present and preserved foraminifera (Jadammina macrescens and Balticammina pseudomacrescens) with good analogy to modern assemblages indicating that RSL was +2.60±0.47 m at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limited their utility as sea‐level indicators. Geochemical parameters also indicate a reduction in marine influence through time. We conclude that RSL reconstructions derived from salt‐marsh sediment preserved beneath Eurasian sub‐Arctic peatlands can provide valuable insight into the spatio‐temporal evolution of the Fennoscandian and Eurasian ice sheets.  相似文献   

20.
Throughflow marsh flumes were used to measure total sediment exchanges (TSS) between the marshes and water column of two Louisiana estuaries. One, the Barataria Basin estuary, is isolated from significant riverine sediment input. There were significant (p<0.05) imports of 33.9 to 443 mg TSS m?2 h?1 at the Barataria Basin brackish marsh (BM) site. The Barataria Basin saltmarsh (SM) site exported TSS in two summer samplings, but significant uptake was measured in April (166 mg m?2 h?1) and November (45 mg m?2 h?1) during a winter frontal passage event. The other estuary, Fourleague Bay, receives large sediment inputs from the Atchafalaya River, and TSS imports of 22.5 to 118.5 mg m?2 h?1 were measured at the BM site here. We calculated sediment accumulation from fluxes quantified in marsh flumes using site-specific sedimentological data and flooding regimes at each site. Water level records from May 1987 to April 1989 showed an extended period of unusually low flooding frequencies. As a result, calculated accretion rates were low, with monthly rates of 0.02 to 0.11 mm and ?0.06 to 0.06 mm at the Barataria BM and SM sites, respectively, and ?0.18 to 0.08 mm at the Fourleague Bay marsh flume site. Actual net sediment deposition, determined by feldspar marker horizon analysis, was 0.7–1.6 mm mo?1 at the Barataria SM and 0.2–1.3 mm mo?1 at the Fourleague Bay BM. Even the highest calculated accretion rates, based on flume measurements, were half to one order of magnitude lower than actual measured sediment deposition. This discrepancy was probably because: 1) most sedimentation occurs during episodic events, such as Hurricane Gilbert in September 1988, which deposited 3.5–15.5 mm of sediment on the Barataria Basin saltmarsh, or 2) most vertical accretion in Louisiana marshes occurs via deposition of in situ organic matter rather than by influx of allochthonous sediment. Our results affirm the variability of short-term sediment transport and depositional processes, the close coupling of meteorologic forcing and flooding regime to sediment dynamics, and the importance of understanding these interrelated mechanisms in the context of longer term measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号