首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Earthquake Triggering along the Xianshuihe Fault Zone of Western Sichuan,China   总被引:19,自引:0,他引:19  
Western Sichuan is among the most seismically active regions in southwestern China and is characterized by frequent strong (M 6.5) earthquakes, mainly along the Xianshuihe fault zone. Historical and instrumental seismicity show a temporal pattern of active periods separated by inactive ones, while in space a remarkable epicenter migration has been observed. During the last active period starting in 1893, the sinistral strike–slip Xianshuihe fault of 350 km total length, was entirely broken with the epicenters of successive strong earthquakes migrating along its strike. This pattern is investigated by resolving changes of Coulomb failure function (CFF) since 1893 and hence the evolution of the stress field in the area during the last 110 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic halfspace, and taking into account both the coseismic slip in strong (M 6.5) earthquakes and the slow tectonic stress buildup associated with major fault segments. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We evaluate whether these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. It was found that all strong earthquakes, and moreover, the majority of smaller events for which reliable fault plane solutions are available, have occurred on stress–enhanced fault segments providing a convincing case in which Coulomb stress modeling gives insight into the temporal and spatial manifestation of seismic activity. We extend the stress calculations to the year 2025 and provide an assessment for future seismic hazard by identifying the fault segments that are possible sites of future strong earthquakes.  相似文献   

2.
Western Turkey has a long history of destructive earthquakes that are responsible for the death of thousands of people and which caused devastating damage to the existing infrastructures, and cultural and historical monuments. The recent earthquakes of Izmit (Kocaeli) on 17 August, 1999 (M w  = 7.4) and Düzce (M w  = 7.2) on 12 November, 1999, which occurred in the neighboring fault segments along the North Anatolian Fault (NAF), were catastrophic ones for the Marmara region and surroundings in NW Turkey. Stress transfer between the two adjacent fault segments successfully explained the temporal proximity of these events. Similar evidence is also provided from recent studies dealing with successive strong events occurrence along the NAF and parts of the Aegean Sea; in that changes in the stress field due to the coseismic displacement of the stronger events influence the occurrence of the next events of comparable size by advancing their occurrence time and delimiting their occurrence place. In the present study the evolution of the stress field since the beginning of the twentieth century in the territory of the eastern Aegean Sea and western Turkey is examined, in an attempt to test whether the history of cumulative changes in stress can explain the spatial and temporal occurrence patterns of large earthquakes in this area. Coulomb stress changes are calculated assuming that earthquakes can be modeled as static dislocations in elastic half space, taking into account both the coseismic slip in large (M ≥ 6.5) earthquakes and the slow tectonic stress buildup along the major fault segments. The stress change calculations were performed for strike-slip and normal faults. In each stage of the evolutionary model the stress field is calculated according to the strike, dip, and rake angles of the next large event, whose triggering is inspected, and the possible sites for future strong earthquakes can be assessed. A new insight on the evaluation of future seismic hazards is given by translating the calculated stress changes into earthquake probability using an earthquake nucleation constitutive relation, which includes permanent and transient effects of the sudden stress changes.  相似文献   

3.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough.  相似文献   

4.
The earthquakes offshore Fujian and Guangdong Provinces concentrated along the two segments near Nan’ao in the south and Quanzhou in the north of the off coast fault, which is very active since the late Pleistocene. In 1918 and 1906, two earthquakes with magnitudes 7.3 and 6.1 respectively occurred in the south and the north regions. With the instrumentally determined seismic parameters of these two earthquakes as standards, the author evaluated the parameters of the historical earthquakes by comparing their macroseismic materials with consideration of the geological background. As a result, chronological tables of historical earthquakes of the south and the north regions were compiled. The seismic activity of the two regions synchronized basically, and their strongest recorded earthquakes were both aroundM s 7.3. Seismic activity usually intensified before the occurrence of strong events. Aftershocks were frequent, but strong aftershocks usually occurred one to several years after the main shock. Two high tides of seismic activity occurred since the late 15th century. Around 1600, eight earthquakes each with magnitudes over 4.3 occurred in both of the two regions. The magnitude of the strongest shock in the south region is 6.7, that in the north region is 7.5. The second high tide occurred at the early 20th century. Among the 18 earthquakes occurred in the south region, one was of magnitude 7.3; whilst only two earthquakes with magnitudes 6.1 and 5.5 respectively occurred in the north region. Further, medium to strong earthquakes never occurred since 1942. Whether this is the “mitigation effect” of strong shocks, or a big earthquake is brewing in the north region is worth intensive study. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 505–515, 1991. This work is supported by Chinese Joint Seismological Science Foundation.  相似文献   

5.
鲜水河断裂带的应力积累与释放   总被引:1,自引:1,他引:1       下载免费PDF全文
黄福明  杨智娴 《地震学报》1987,9(2):128-142
本文根据历史地震(Ms6.0)的资料,研究了鲜水河断裂带的地震活动性,并利用断层的位错模式进一步研究该断裂带的应力积累和释放过程.结果表明,该断裂带的强震活动大致以道孚为界,形成北西和南东两个活动地段,呈现南北交替活动的特征.地震能量的这种交替释放似具有准周期性质,Ms7.0级地震的平均复发周期为27.6年.给出该断裂带在三个不同时间段(1700-1811,1816-1967,1816-1982)强震断层作用引起的应力释放图象,讨论了前两个时间段地震应力场对其后发生的第一个大地震的重要影响.计算了1893年以来在断裂带南东段(相对闭锁段)的应力积累,示出相应的最大剪应力和流体静应力等值线图.最后,根据应力积累、附加应力变化、地震活动规律和应变释放曲线特征,估计了鲜水河断裂带的地震趋势.认为在本世纪末,在断裂带南东段的(1)康定-磨西段或(2)道孚-乾宁段或(3)乾宁-康定段将可能发生 Ms=7.40.3地震.   相似文献   

6.
Spatial distribution of sources of strong and large earthquakes on the Xiaojiang fault zone in eastern Yunnan is studied according to historical earthquake data. 7 segments of relatively independent sources or basic units of rupture along the fault zone have been identified preliminarily. On every segment, time intervals between main historical earthquakes are generally characterized by “time-predictable” recurrence behavior with indetermination. A statistic model for the time intervals between earthquakes of the fault zone has been preliminarily established. And a mathematical method has been introduced into this paper to reckon average recurrence interval between earthquakes under the condition of having known the size of the last event at a specific segment. Based on these, ranges of the average recurrence intervals given confidence have been estimated for events of various sizes on the fault zone. Further, the author puts forward a real-time probabilistic model that is suitable to analyze seismic potential for individual segments along a fault zone on which earthquake recurrence intervals have been characterized by quasi-time-predictable behavior, and applies this model to calculate conditional probabilities and probability gains of earthquake recurring on the individual segments of the Xiaojiang fault zone during the period from 1991 to 2005. As a consequence, it has shown that two parts of this fault zone, from south of Dongchuan to Songming and from Chengjiang to Huaning, have relatively high likelihoods for strong or large earthquake recurring in the future. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 322–330, 1993.  相似文献   

7.
A very simple model of fault fracturing is presented. The fault is envisaged as a series of faultlets whose area is randomly distributed and whose strength have a Gaussian distribution. Faultlet slip occurs when the loading stress reaches its strength. Large earthquakes are generated by coalescence of smaller cracks. Theb value of the Gutenberg-Richter frequency magnitude relation is then calculated. Ab equal to 1 (scale invariance) is obtained only for events with magnitudeM greater than 3. At lower magnitude the number of events decreases with decreasing magnitude. A similar result can be explained by the experimental observation of an anomalous scaling law of real earthquakes. Here the suggestion is advanced that a similar observation could be interpreted by a multifractal approach.  相似文献   

8.
陕西地区小微震震源机制研究   总被引:4,自引:1,他引:3       下载免费PDF全文
小微震事件的震源机制是区域应力场及诸多地球动力学研究的基础资料。陕西地区为多个地震带的交汇区,近些年积累了丰富的小微震波形资料。运用新近发展的适用于求解小微震震源机制的广义极性振幅技术(GPAT),结合陕西2015地壳速度模型,求解陕西测震台网2011年4月至2015年12月间记录的121次ML1.5~3.5事件的震源机制。反演结果表明:(1)以上事件的震源机制大部分为走滑及正断类型,其比例占64.5%;逆断型机制占22.3%。(2)反演震源机制得到的震源深度与定位深度具有良好的一致性;矩震级与近震震级间存在差别,且这种差别随事件的变小而增大。(3)对比渭河断陷带相关研究成果,验证了该区域震源机制以正断型为主,具有拉张应力状态。  相似文献   

9.
—The 1952 Kamchatka earthquake is among the largest earthquakes of this century, with an estimated magnitude of M w = 9.0. We inverted tide gauge records from Japan, North America, the Aleutians, and Hawaii for the asperity distribution. The results show two areas of high slip. The average slip is over 3 m, giving a seismic moment estimate of 155×1020Nm, or M w = 8.8. The 20th century seismicity of the 1952 rupture zone shows a strong correlation to the asperity distribution, which suggests that the large earthquakes (M > 7) are controlled by the locations of the asperities and that future large earthquakes will also recur in the asperity regions.  相似文献   

10.
2022年9月5日四川泸定发生M6.8地震,为研究泸定地震孕震区的应力变化,选取b值、小震调制比和丛集率这3个参数,对泸定地震前的区域地震活动状态进行计算研究。结果显示:泸定及周边区域几次强震发生前,区域地震活动均存在持续时间较长的低b值时段,且在低b值状态下震前短期内出现小震高丛集、高调制比的现象;鲜水河断裂带的地震活动状态分析显示,此次泸定地震前该断裂带存在持续时间近10个月的低b值状态,且短期内出现丛集率升高、调制比高值现象。通过对比分析,认为泸定地震是鲜水河断裂带构造运动的结果。综合分析认为,结合应力场背景和构造条件研究地震活动b值、固体潮调制比和丛集率的时空变化有助于理解大地震的孕育演化过程。  相似文献   

11.
Paleo-earthquake studies on the eastern section of the Kunlun fault   总被引:1,自引:0,他引:1  
Introduction East Kunlun active fault is one of the largest sinistral slip fault zones in northern Tibetan Pla-teau. The fault tails primarily after the ancient eastern Kunlun suture zone, which was reactivatedby the northward subduction of the Indian plate beneath the Eurasian plate. The western end of thefault starts near the western flank of the Buxedaban peak in Qinghai Province. The fault then ex-tends eastwards through the Kusai Lake, Xidatan, Dongdatan, Alag Lake, Tuosuo Lak…  相似文献   

12.
In this paper we assess the size and effects of the earthquakes of 12 May 1866, and 24 January 1916 in Anatolia (Turkey). We show that these events had a magnitude Ms 7.2 and that the former was associated with a 45-km long surface fault break along the north-east part of the East Anatolian Fault Zone. These two earthquakes are chosen among others in order to demonstrate how easy it is to miss out large earthquakes of the historical, even of the early instrumental period, and to draw the incompleteness of many existing catalogues to the attention of those who use them for the estimation of slip rates and the assessment of seismic hazard. Of the two earthquakes studied here, the former was only vaguely known and the latter is not included in Gutenberg and Richter's catalogue.  相似文献   

13.
张晖  谭毅培  马婷  翟浩  张珂  李娟 《中国地震》2021,37(2):430-441
内蒙古和林格尔地处鄂尔多斯块体北缘阴山地震带内,历史上6级以上强震频发.2020年3月30日和林格尔发生ML4.5地震,打破了自2005年以来阴山地震带ML4.0以上地震的长期平静.研究此次地震序列的发震构造对区域应力状态和地震危险性分析有重要作用,然而内蒙古地震台网台站较为稀疏,相对于华北其他地区地震监测能力较低,对...  相似文献   

14.
根据最近28年的区域台网地震资料,利用b值空间分布及断裂带分段的多地震活动参数值的组合方法,结合历史强震背景,分析了沿川北龙门山-岷山断裂带不同断裂段的现今活动习性,并初步判别出了潜在的强震危险段落。研究结果表明:龙门山断裂带中-南段存在6个具有不同现今活动习性的段落,其中,绵竹-茂县段处于相对高应力背景下的频繁中-小震活动状态,被认为是龙门山断裂带上未来最可能发生强震的地段;江油-平武段处于相对高应力背景下的稀疏中-小震活动状态,未来有可能发生中强地震。而岷山断裂带中的岷江断裂段和虎牙断裂段,以及叠溪隐伏逆断层地区均具有相对偏低的应力水平,可能与其不久前分别发生过大地震和强震有关,未来不太长的时期内复发大地震的可能性较小。  相似文献   

15.
The magnitude (M w) 7.9 Wenchuan earthquake occurred on 12 May 2008 in the Longmen Shan region of China, the transition zone between the Tibetan Plateau and the Sichuan Basin, resulting in widespread damage throughout central and western China. The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic uplift and denudation accompanied by folding and thrusting, yet no large thrust earthquakes are known prior to the 2008 M w 7.9 Wenchuan earthquake. Field and excavation investigations reveal that a great historical earthquake occurred in the Sichuan region that ruptured a >200-km-long thrust fault within the Longmen Shan Thrust Belt, China, which also triggered the 2008 M w 7.9 Wenchuan earthquake. The average co-seismic slip amount produced by this historical earthquake is estimated to be 2–3 m, comparable with that caused by the 2008 Wenchuan earthquake. Paleoseismic and archaeological evidence and radiocarbon dating results show that the penultimate great earthquake occurred in the Sichuan region during the late Tang-Song Dynasty, between AD 800 and 1000, suggesting a recurrence interval of ~1,000–1,200 years for Wenchuan-magnitude (M = ~8) earthquakes in the late Holocene within the Longmen Shan Thrust Belt. This finding is in contrast with previous estimates of 2,000–10,000 years for the recurrence interval of large earthquakes within the Longmen Shan Thrust Belt, as obtained from long-term slip rates based on the Global Positioning System and geological data, thereby necessitating substantial modifications to existing seismic-hazard models for the densely populated region at the eastern marginal zone of the Tibetan Plateau.  相似文献   

16.
Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes ofM L =5.3 andM L =5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average.The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquakeretardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979M L =5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes ofM L =5.2 andM L =6.2, respectively.Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes.Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip.  相似文献   

17.
Turkey was struck by two major events on August 17th and November 12th, 1999. Named Kocaeli (Mw=7.4) and Düzce (Mw=7.2) earthquakes, respectively, the two earthquakes provided the most extensive strong ground motion data set ever recorded in Turkey. The strong motion stations operated by the General Directorate of Disaster Affairs, the Kandilli Observatory and Earthquake Research Institute of Bogazici University and Istanbul Technical University have produced at least 27 strong motion records for the Kocaeli earthquake within 200 km of the fault. Kocaeli earthquake has generated six motions within 20 km of the fault adding significantly to the near-field database of ground motions for Mw>=7.0 strike–slip earthquakes. The paper discusses available strong motion data, studies their attenuation characteristics, analyses time domain, as well as spectral properties such as spectral accelerations with special emphasis on fault normal and fault parallel components and the elastic attenuation parameter, kappa. A simulation of the Kocaeli earthquake using code FINSIM is also presented.  相似文献   

18.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum attershock magnitude of 20 earth-quakes with M≥7.5 in Chinese mainland, and then the variation tendency of attershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum attershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side oftbe cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of attershocks would be high.b) The fault of the M--8. l Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault,and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. Alter a comparison analysis, we suggest that the attershock activity level will not be high in the late period of this earth-quake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

19.
We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.  相似文献   

20.
从北纬40°纬向地震带活动的关系探讨了华北3次强震发生的同时性的原因,这条EW向地震带首先发生的地震传递的能量促使唐山积累了发震能量,而另一条由邢台、河间NE走向的下地壳蠕滑断层的能量传至唐山断层后,解锁了该孕震断层,从而发生了唐山大震。地震波的触发作用也是同步的另一个原因,除了震动的断层面的直接触发之外,对组合模式中单地震波的积累与调整也会产生触发作用而改变其性质。另外还从中国8级大地震发生的25年周期讨论了同步性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号