首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
The spacetime gravitational field of a deformable body   总被引:3,自引:0,他引:3  
The high-resolution analysis of orbit perturbations of terrestrial artificial satellites has documented that the eigengravitation of a massive body like the Earth changes in time, namely with periodic and aperiodic constituents. For the space-time variation of the gravitational field the action of internal and external volume as well as surface forces on a deformable massive body are responsible. Free of any assumption on the symmetry of the constitution of the deformable body we review the incremental spatial (“Eulerian”) and material (“Lagrangean”) gravitational field equations, in particular the source terms (two constituents: the divergence of the displacement field as well as the projection of the displacement field onto the gradient of the reference mass density function) and the `jump conditions' at the boundary surface of the body as well as at internal interfaces both in linear approximation. A spherical harmonic expansion in terms of multipoles of the incremental Eulerian gravitational potential is presented. Three types of spherical multipoles are identified, namely the dilatation multipoles, the transport displacement multipoles and those multipoles which are generated by mass condensation onto the boundary reference surface or internal interfaces. The degree-one term has been identified as non-zero, thus as a “dipole moment” being responsible for the varying position of the deformable body's mass centre. Finally, for those deformable bodies which enjoy a spherically symmetric constitution, emphasis is on the functional relation between Green functions, namely between Fourier-/ Laplace-transformed volume versus surface Love-Shida functions (h(r),l(r) versus h (r),l (r)) and Love functions k(r) versus k (r). The functional relation is numerically tested for an active tidal force/potential and an active loading force/potential, proving an excellent agreement with experimental results. Received: December 1995 / Accepted: 1 February 1997  相似文献   

2.
本文提出了一种基于计算机视觉的专题图读取系统方案。该系统用CCD相机获取专题图影象,通过线划跟踪、弧段矢量化、拓扑结构形成、数据压缩、几何纠正与拼接等步骤,实现专题图的自动读取,继而进行各种几何量算和统计,建立专题信息库  相似文献   

3.
The explosion of computer processing capabilities for manipulating geographic data has produced a concomitant increase in the number of geographic data file formats available. The many formats make it difficult to exchange and manipulate geographic data from several sources, and sometimes even from the same source. The U.S. Bureau of the Census has been a contributor to the “Yet Another Geographic File Format” movement over the past two decades with its Address Coding Guides (following the 1970 decennial census), the GBF/DIME-Files (following the 1980 decennial census), and four different versions of its TIGER/Line files at various times during the 1990 decennial census cycle. The TIGER data base is a massive computer file that provides geographic information about the entire United States and its territories in great detail, down to the individual city block and its component boundary features. Its value to more than Census Bureau activities is enormous. To enhance the value of the TIGER data base, and to make it easier to use, the Census Bureau is releasing the file in the new Spatial Data Transfer Standard (SDTS) format. The benefits of a standard transfer format are manifold. This paper discusses some of the intergovernmental activities that were required before the exchange standard was adopted and some of the problems of implementing the standard within the Census Bureau. The Census Bureau is not alone in its decision to release geographic data files in the SDTS format, and some of the benefits of using the standard for exchanging data among agencies also are described.  相似文献   

4.
A synthetic Earth for use in geodesy   总被引:1,自引:0,他引:1  
 A synthetic Earth and its gravity field that can be represented at different resolutions for testing and comparing existing and new methods used for global gravity-field determination are created. Both the boundary and boundary values of the gravity potential can be generated. The approach chosen also allows observables to be generated at aircraft flight height or at satellite altitude. The generation of the synthetic Earth shape (SES) and gravity-field quantities is based upon spherical harmonic expansions of the isostatically compensated equivalent rock topography and the EGM96 global geopotential model. Spherical harmonic models are developed for both the synthetic Earth topography (SET) and the synthetic Earth potential (SEP) up to degree and order 2160 corresponding to a 5′×5′ resolution. Various sets of SET, SES and SEP with boundary geometry and boundary values at different resolutions can be generated using low-pass filters applied to the expansions. The representation is achieved in point sets based upon refined triangulation of a octahedral geometry projected onto the chosen reference ellipsoid. The filter cut-offs relate to the sampling pattern in order to avoid aliasing effects. Examples of the SET and its gravity field are shown for a resolution with a Nyquist sampling rate of 8.27 degrees. Received: 6 August 1999 / Accepted: 26 April 2000  相似文献   

5.
The short wavelength geoid undulations, caused by topography, amount to several decimeters in mountainous areas. Up to now these effects are computed by means of digital terrain models in a grid of 100–500m. However, for many countries these data are not yet available or their collection is too expensive. This problem can be overcome by considering the special behaviour of the gravity potential along mountain slopes. It is shown that 90 per cent of the topographic effects are represented by a simple summation formula, based on the average height differences and distances between valleys and ridges along the geoid profiles, δN=[30.H.D.+16.(H−H′).D] in mm/km, (error<10%), whereH, H′, D are estimated in a map to the nearest 0.2km. The formula is valid for asymmetric sides of valleys (H, H′) and can easily be corrected for special shapes. It can be used for topographic refinement of low resolution geoids and for astrogeodetic projects. The “slope method” was tested in two alpine areas (heights up to 3800m, astrogeodetic deflection points every 170km 2) and resulted in a geoid accuracy of ±3cm. In first order triangulation networks (astro points every 1000km 2) or for gravimetric deflections the accuracy is about 10cm per 30km. Since a map scale of 1∶500.000 is sufficient, the method is suitable for developing countries, too.  相似文献   

6.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

7.
Visual interpretation of IRS ID LISS-III fused with PAN data (1:12,500 scale) ofPatloinala micro-watershed of Puruliya district, West Bengal was carried out for delineating the physiographic units based on the variations in image characteristics. The major physiographic units identified were upland(Tanr), medium land(Baid), and low land(Bahal andKanali). The satellite remote sensing data coupled with ground truth were translated in terms of soils using composite interpretation map as base. The abstraction level attained was phases of soil series based on Soil Taxonomy. On the basis of physiographic variation and soil or soil site characteristics such as texture, depth, slope, erosion etc. the problem areas were identified and land use plan has been suggested for the overall development of the micro-watershed.  相似文献   

8.
游为  范东明 《四川测绘》2006,29(4):163-165
提出了一种AutoCAD与Surfer软件相结合实现地形图三维可视化的方法.该方法将AutoCAD的地形图文件(DWG格式)通过图形交换文件(DXF格式)输出,使用高级语言编程,转化为Surfer软件所对应的数据文件,快速生成二维或三维图形.  相似文献   

9.
A procedure is described for the revision of digital maps in geographic information systems, the basis of which rests upon a “mutual and unambiguous correspondence” between a digital map and its structural (text or graphic) model(s). Rules of transference, editing, elimination, inclusion, and cross-referencing of names are elaborated for regulation of the processes by which non-digital (cartographic, air photo, statistical) sources of new information are used to transform digital information in the original data base. Revision of digital maps is accomplished through creation of a data base of digital corrections to an original data base and/or subsequent editing of digital map(s) from these corrections or others initiated during raster scanning. Translated from: Geodeziya i kartografiya, 1986, No. 9, pp. 38-43.  相似文献   

10.
The term “entity” covers, when used in the field of electronic data processing, the meaning of words like “thing”, “being”, “event”, or “concept”. Each entity is characterized by a set of properties. An information element is a triple consisting of an entity, a property and the value of a property. Geodetic information is sets of information elements with entities being related to geodesy. This information may be stored in the form ofdata and is called ageodetic data base provided (1) it contains or may contain all data necessary for the operations of a particular geodetic organization, (2) the data is stored in a form suited for many different applications and (3) that unnecessary duplications of data have been avoided. The first step to be taken when establishing a geodetic data base is described, namely the definition of the basic entities of the data base (such as trigonometric stations, astronomical stations, gravity stations, geodetic reference-system parameters, etc...). Presented at the “International Symposium on Optimization of Design and Computation of Control Networks”, Sopron, Hungary, July 1977.  相似文献   

11.
A methodology for the interpretation and mapping of lineaments and related geological features from medium-resolution, Meteor satellite scanner imagery is described. Special emphasis is placed on improving traditional methods of transferring information interpreted from remote sensing materials onto a cartographic base through compensation for the special character of geometric distortion on scanner imagery and selection of appropriate map projections for the cartographic base. This boils down to the development of computer models for correlating control points on a scanner image and map base, and algorithms for the plotting both of that base and the thematic image elements that are the focus of interest. Translated from: Vestnik Moskovskogo Universiteta, geografiya, 1986, No. 3, pp. 35–40.  相似文献   

12.
主要介绍了用于移动数据采集平台上的地下管网普查数字工作底图的制作技术。首先介绍用于制作工作底图的多源数据的组成、数据格式以及利用程度,然后介绍数字工作底图的数据格式、数据组织方式,接下来重点阐述数据库文件转换技术、批量属性规则化处理技术、批量裁切技术。通过自主开发软件,实现普查数字工作底图的快速制作,提高了数据准备的效率。  相似文献   

13.
Sampling Design for Global Scale Mapping and Monitoring of Agriculture   总被引:2,自引:0,他引:2  
Gathering timely information of the global agriculture production of major and commercially important crops has become essential with globalization of the agriculture commodities. Remote sensing based crop production forecasting and monitoring is emerging as one of the most viable solutions for such large area monitoring task. A suitable sampling strategy is the basic requirement towards this. In the present study, different sampling sizes using agricultural area as the sampling frame has been used to analyse the optimum sampling size for continent level assessment. Land use/cover map of the world using 300 m resolution MERIS data was used to generate the agriculture area mask. Grid size of (i) 5° × 5° (ii) 1° × 1° (iii) 30′ × 30′ (iv) 15′ × 15′ (v) 7.5′ × 7.5′ and (vi) 5′ × 5′ were used. Percent crop area was estimated for the grids of all sizes. The grid size of 15′ × 15′ was found to be optimum for global monitoring, as not much change Ws observed in the distribution of the grids after reducing the sample size. Stratification was done using simple random and stratified random sampling method. Stratification using the ‘cumulative square-root of frequency method that resulted in five strata performed best in terms of the variance of the population.  相似文献   

14.
An inverse Poisson integral technique has been used to determine a gravity field on the geoid which, when continued by analytic free space methods to the topographic surface, agrees with the observed field. The computation is performed in three stages, each stage refining the previous solution using data at progressively increasing resolution (1o×1o, 5′×5′, 5/8′×5/8′) from a decreasing area of integration. Reduction corrections are computed at 5/8′×5/8′ granularity by differencing the geoidal and surface values, smoothed by low-pass filtering and sub-sampled at 5′ intervals. This paper discusses 1o×1o averages of the reduction corrections thus obtained for 172 1o×1o squares in western North America. The 1o×1o mean reduction corrections are predominantly positive, varying from −3 to +15mgal, with values in excess of 5mgal for 26 squares. Their mean andrms values are +2.4 and 3.6mgal respectively and they correlate well with the mean terrain corrections as predicted byPellinen in 1962. The mean andrms contributions from the three stages of computation are: 1o×1o stage +0.15 and 0.7mgal; 5′×5′ stage +1.0 and 1.6mgal; and 5/8′×5/8′ stage +1.3 and 1.8mgal. These results reflect a tendency for the contributions to become larger and more systematically positive as the wavelengths involved become shorter. The results are discussed in terms of two mechanisms; the first is a tendency for the absolute values of both positive and negative anomalies to become larger when continued downwards and, the second, a non-linear rectification, due to the correlation between gravity anomaly and topographic height, which results in the values continued to a level surface being systematically more positive than those on the topography.  相似文献   

15.
Automated GPS Data Analysis Service   总被引:5,自引:1,他引:4  
Automatic analysis of geodetic-quality GPS data is available with the use of e-mail and ftp (file transfer program) as an interface to a computer at the Jet Propulsion Laboratory (JPL), where precise transmitter parameters – GPS ephemerides and clock errors – are computed regularly. The interface is such that e-mail from an external user causes the JPL computer to fetch the user's data. The computer than analyzes the data, and places the results in an area accessible to the user. An e-mail to the user gives information on the location of the analysis results, which the user can subsequently fetch. Operations on the JPL computer are entirely automatic, and require essentially no labor. ? 1999 John Wiley & Sons, Inc.  相似文献   

16.
ABSTRACT

Conceptually, the theory and implementation of “map projection” in geographic information system (GIS) technology is difficult to comprehend for most introductory students and novice users. Compounding this difficulty is the concept of a “map projection file” that defines map projection parameters of geo-spatial data. The problem of the “missing projection file” appears ubiquitous for all users, especially in practice where data is widely shared. Another common problem is inadvertent misapplication of the “Define Projection” tool that can result in a GIS dataset with an incorrectly defined map projection file. GIS education should provide more guidance in differentiating the concepts of map projection versus projection files by increasing understanding and minimizing common errors. A novel pedagogical device is introduced in this paper: the seven possible states of GIS data with respect to map projection and definition. The seven possible states are: (1) a projected coordinate system (PCS) that is correctly defined, (2) a PCS that is incorrectly defined, (3) a PCS that is undefined, (4) a geographic coordinate system (GCS) that is correctly defined, (5) a GCS that is incorrectly defined, (6) a GCS that is undefined, and (7) a non-GCS. Recently created automated troubleshooting tools to determine a missing map projection file are discussed.  相似文献   

17.
In order to achieve to GPS solutions of first-order accuracy and integrity, carrier phase observations as well as pseudorange observations have to be adjusted with respect to a linear/linearized model. Here the problem of mixed integer-real valued parameter adjustment (IRA) is met. Indeed, integer cycle ambiguity unknowns have to be estimated and tested. At first we review the three concepts to deal with IRA: (i) DDD or triple difference observations are produced by a properly chosen difference operator and choice of basis, namely being free of integer-valued unknowns (ii) The real-valued unknown parameters are eliminated by a Gauss elimination step while the remaining integer-valued unknown parameters (initial cycle ambiguities) are determined by Quadratic Programming and (iii) a RA substitute model is firstly implemented (real-valued estimates of initial cycle ambiguities) and secondly a minimum distance map is designed which operates on the real-valued approximation of integers with respect to the integer data in a lattice. This is the place where the integer Gram-Schmidt orthogonalization by means of the LLL algorithm (modified LLL algorithm) is applied being illustrated by four examples. In particular, we prove that in general it is impossible to transform an oblique base of a lattice to an orthogonal base by Gram-Schmidt orthogonalization where its matrix enties are integer. The volume preserving Gram-Schmidt orthogonalization operator constraint to integer entries produces “almost orthogonal” bases which, in turn, can be used to produce the integer-valued unknown parameters (initial cycle ambiguities) from the LLL algorithm (modified LLL algorithm). Systematic errors generated by “almost orthogonal” lattice bases are quantified by A. K. Lenstra et al. (1982) as well as M. Pohst (1987). The solution point of Integer Least Squares generated by the LLL algorithm is = (L')−1[L'◯] ∈ ℤ m where L is the lower triangular Gram-Schmidt matrix rounded to nearest integers, [L], and = [L'◯] are the nearest integers of L'◯, ◯ being the real valued approximation of z ∈ ℤ m , the m-dimensional lattice space Λ. Indeed due to “almost orthogonality” of the integer Gram-Schmidt procedure, the solution point is only suboptimal, only close to “least squares.” ? 2000 John Wiley & Sons, Inc.  相似文献   

18.
The Keoladeo National Park, Bharatpur, a man-made fresh water wetland carved out of a natural depression on the floodplain of two minor tributaries of the Yamuna-Gambhir and the Banganga is the country’s finest waterfowl habitat. This important wetland was set aside as a bird sanctuary in 1956 and it was elevated to the status of a National Park in 1981. It was also designated a Ramsar site- a wetland of international importance under the Ramsar convention. This important wetland has distinction of being the only Indian wetland to be included under both the Ramsar and the World Heritage convention. The attempt has been made to evaluate the habitat of Sarus crane in the Keoladeo National Park using satellite data — IRS LISS III and PAN merged product and GIS. Geocoded data of IRS —1C LISS III of 21 March 1999 on 1: 50,000 scale and PAN data of March 17, 1999 were used to generate the vegetation cover type map and open water. The maps showing drainage, human habitations, contours, roads, etc. were prepared using the Survey of India topographical sheets and contour map of park area. Information regarding habitat parameters was collected from the existing literature and field observations. The Sarus crane mainly fed in the wetland on the rhizome ofNymphaea sp.,Scirpus tuberosus andEleocharis plantaginea. As there were changes in their habitat requirements at different seasons, the sighting of Sarus crane in each habitat were recorded along with the time and activity during observation. The most utilized habitat for the entire period of study was moderately wet grassland followed by pools. The pools were used mainly during the summer. The water depth requirement observed was between 30–40 cm and 20–40 cm. The suitability maps for Sarus crane were then generated using all remote sensing based and conventional information using rule based equations in the GIS within the Keoladeo National Park.  相似文献   

19.
王保国 《测绘通报》2017,(8):135-137
在农村土地承包经营权的确权登记工作中,利用影像图在AutoCAD平台下解析出土地边界,实地调查土地边界的正确性,并核实土地权属信息及共有人信息,在确保数据的完整性和准确性后,将数据按照国家标准格式转换至GIS管理平台。在AutoCAD平台的多段线向GIS数据转换中,利用Esri的C++开源库ShapeLib,使用.NET语言进行二次开发,对地块线进行拓扑检查、属性检查,将地块线转换为Polygon实体的形文件,扩展属性转入DBF文件,最终生成GIS通用格式Shapefile文件,从而提高了工作效率,具有一定的实用价值。  相似文献   

20.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号