首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
华北地区地壳上地幔速度各向异性研究   总被引:4,自引:2,他引:2       下载免费PDF全文
本文介绍面波反演得到的华北地区地壳上地幔速度各向异性分布图像,并与S波分裂的结果作初步的定性比较.不同周期瑞利波群速度的方位各向异性图像呈现显著的横向变化,与华北地区地壳上地幔的构造分块和垂直分层结构有比较密切的联系.在鄂尔多斯和阿拉善等稳定地块中,岩石圈地幔到160 km深度都保持比较一致的显著各向异性;而在发生过岩...  相似文献   

2.
We present a method to obtain spatial distributions of seismic anisotropy associated with regional stress and local faulting in the crust from wide-angle seismic data. The method contains three steps. The first step consists of obtaining radial- and transverse-component seismic sections using a pre-stack depth migration algorithm from the S-wave velocity model determined by conventional interpretation of picked intra-crustal seismic events. In the second step, we compute time delays between split shear-waves and polarizations of fast split shear-waves by minimizing the transverse-component seismic energy. The time delay and polarization in each layer are derived using a layer-stripping method. The final step is to estimate the average splitting parameters along the whole profile. Thus, the average time delay and polarization can be regarded as caused by the effects owing to regional structure and stress fields, whereas the residual values of the splitting parameters are considered to be related to local structures and local faulting. Our method allows us to construct multi-layer anisotropic images, which may later be interpreted in terms of intra-layer coupling/decoupling or deformation. We present results from a set of three-component seismic data acquired by a controlled source experiment in the southeast region of China. The results demonstrate that the average polarizations and time delays are consistent with the direction and strength of the stress field, and their lateral variations related to local anisotropy match the spatial distribution of surface faulting crossing the acquisition seismic profile.  相似文献   

3.
We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.  相似文献   

4.
蒙古中南部地区地壳各向异性及其动力学意义   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙古中南部地区布设的69套宽频带数字地震仪2011年8月—2013年7月记录的远震事件,使用时间域反褶积方法提取接收函数,并挑选高质量Pms震相,通过改进的剪切波分裂方法对研究区地壳各向异性参数进行了研究,最终获取了1473对各向异性参数.经过统计分析,有48个台站可以归纳出两个方向的各向异性,11台站得到单个方向的各向异性,而剩余10个台站各向异性方向比较发散.结果显示,各向异性在蒙古中南部地壳中呈不均匀分布,有54个台站得到了NE-SW向各向异性,快波偏振方向平均值为N58°E±16°,与最大水平主应力σHmax方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因存在于上地壳,可能与流体填充的微裂隙有关.而NW-SE向各向异性在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳成岩矿物晶体定向排列是各向异性的主要成因.研究区地壳各向异性的分层特征总体上支持岩石圈受到NE-SW向挤压的动力学模型.  相似文献   

5.
Digital seismograms continuously recorded from 1988 to 1992 by two stations of the RESNOM seismic network in northern Baja California, Mexico, were used to search for probable shear-wave anisotropic characteristics in the region of the Cerro Prieto fault. Shear-wave splitting was identified in many of the three-component records analyzed. We measured the polarization direction of the leadingS wave inside theS-wave window as well as the delay times between fast and slow phases on those records displaying shear-wave splitting. For station CPX, which is nearest the Imperial Valley region to the north, the preferred polarization direction found in this study (azimuth 180°±10°) coincides with the direction of the regional maximum compressive stress determined for the region. This polarization direction can be interpreted in terms of the “Extensive Dilatancy Anisotropy” model as the effect of vertical parallel aligned cracks. The preferred polarization direction measured at LMX, however, gives an azimuth of 45°±5°. Thus, it appears that faults and fractures aligned oblique to the main tectonic trend have a greater influence on the anisotropic characteristics of the crust south of Cerro Prieto volcano than that of the regional stress field. Time delays between slow and fastS waves observed at CPX appear constant from 1988 to 1992 while delays measured at LMX for the same interval indicate a small increase with time which cannot be attributed to azimuthal variations of paths.  相似文献   

6.
为配合汶川地震断裂带科学钻探工程(WFSD),中国地震局地球物理研究所在四川省绵竹市天池乡和灌县—安县断裂附近分别架设了15套微震仪器和17个短周期地震台.基于WFSD-3附近的微震、短周期和区域台网的固定台站记录的近震数据,通过横波窗内S波分裂计算,得到其上地壳各向异性参数,即快波偏振方向和慢波的时间延迟,并分析了研究区的上地壳各向异性特征.结果显示,研究区大部分区域的快波偏振方向为NE向,与龙门山断裂带走向一致,但在研究区微震台阵布设小区域内,快波偏振方向表现出东西分区特征,东部为NE向,西部为NW向.上地壳各向异性主要是受到岩层中随应力分布排列的微裂隙和岩石或矿物结构的影响,研究区内快波偏振方向主要表现为NE方向,与断裂走向一致,反映了研究区上地壳各向异性主要受控于结构控制的各向异性,局部区域的快波偏振方向为NW向,与区域最大主压应力方向一致,说明区域应力场对研究区上地壳各向异性也有影响.通过分析微震台阵的归一化时间延迟随时间的变化情况可以反映区域应力场的变化情况.微震台阵的慢S波时间延迟在2012、2013年较为离散,在2014年有收敛的趋势,反映了强震后区域应力场逐渐稳定的趋势.  相似文献   

7.
Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. A shear wave propagating in an azimuthally anisotropic medium splits into two components with different polarizations if the source polarization is not aligned with the principal axes of the medium. For vertical propagation of shear waves in a horizontally layered medium containing vertical fractures, the shear‐wave splitting depends on the shear compliance of the fractures, but is independent of their normal compliance. If the fractures are not perfectly vertical, the shear‐wave splitting also depends on the normal compliance of the fractures. The normal compliance of a fluid‐filled fracture decreases with increasing fluid bulk modulus. For dipping fractures, this results in a decrease in shear‐wave splitting and an increase in shear‐wave velocity with increasing fluid bulk modulus. The sensitivity of the shear‐wave splitting to fluid bulk modulus depends on the interconnectivity of the fracture network, the permeability of the background medium and on whether the fracture is fully or partially saturated.  相似文献   

8.
龙门山断裂带北段南坝地区上地壳S波分裂特征   总被引:1,自引:1,他引:0       下载免费PDF全文
基于汶川科钻4号井孔(WFSD-4)附近的较小尺度的南坝微震台阵以及较大尺度的川西流动台站和区域台网的固定台站记录到的近震波形资料,通过横波窗内的S波分裂计算,分析了龙门山断裂带北段南坝地区的上地壳介质各向异性特征,并对区域应力场及构造特征展开讨论.S波分裂计算的结果显示研究区快波偏振方向主要表现为NE-NEE向,与北川断裂的走向一致,也与区域主压应力方向一致.小尺度密集分布的南坝微震台阵的计算结果进一步显示,靠近北川断裂的台站,其快波偏振方向与断裂走向一致,而距北川断裂较远的西北部台站的快波偏振方向与断裂走向不一致,反映了上地壳各向异性特征与地表的活动断裂结构密切相关.从南坝微震台阵的归一化时间延迟随时间的变化情况可以发现,在一个震中位于台阵布设范围内的地震事件发生前后,时间延迟有明显的变化,表明时间延迟随时间变化较为敏感,地震的能量影响了介质的性质.对比龙门山断裂带中段的科钻3号井孔周边地区的S波分裂计算结果,归一化时间延迟与本文结果一致,表明龙门山断裂带中段和北段的上地壳介质各向异性强度基本相同.  相似文献   

9.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

10.
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1D anisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets - travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm - isometric algorithm - was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P- and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought. Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the VP/VS ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters.  相似文献   

11.
The northeastern part of the Tibetan Plateau is a region where different tectonic blocks collide and intersect, and large earthquakes are frequent. Global Navigation Satellite System(GNSS) observations show that tectonic deformation in this region is strong and manifests as non-uniform deformation associated with tectonic features. S-wave splitting studies of near-field seismic data show that seismic anisotropy parameters can also reveal the upper crustal medium deformation beneath the reporting...  相似文献   

12.
Introduction The study of the upper mantle anisotropy in Yunnan area benefits the research of deep structure of Sichuan-Yunnan active block and the characteristics of deformation field, the analysis of the coupling relations among different layers of the earth and the promotion of understanding the relation between anisotropy and stress-strain field and geological construction processes. The research results would be of important significance for the interpretation of movement of plates, the …  相似文献   

13.
地震层析成像研究清晰给出了地球深部俯冲板片的大尺度形态,但与俯冲过程相关的地幔流动特征仍不明确.在俯冲地幔楔系统中,前人观测到了与海沟平行和垂直的快波偏振方向.本文研究了西北太平洋俯冲板片在地幔过渡带中停滞形成的"大地幔楔"中的各向异性特征.对具有长期稳定观测数据的MDJ台站SKS震相和区域深源地震的直达S波震相进行了...  相似文献   

14.
穿透含裂隙、裂缝地壳8s视周期的SV波的理论地震图研究表明,当地壳平均裂隙密度高于0.01即横波各向异性高于1%时,非对称面内不同方位的SKS波均发生分裂;地震图中直接的记录显示是切向T分量上出现SKS波的振动,其振幅随地壳平均裂隙密度的增大而增强,甚至能与径向R分量上的振幅相当.局限于上地壳的强裂缝各向异性同样能引起SKS分裂.长周期SKS波分裂对地壳内裂隙、裂缝的分布缺乏分辨率.直立平行排列裂隙、裂缝使得SKS分裂T分量记录特征具有方位对称性,这来自于HTI介质中快、慢波偏振和到时差随方位变化的对称性;而倾斜裂隙、裂缝使得该方位对称性丧失.对实际观测SKS分裂的偏振解释需要考虑地壳裂隙各向异性,特别是断裂附近的强裂缝各向异性.  相似文献   

15.
Butterworth band-pass filter has been applied to S-wave data recorded at 8 stations in China mainland, and S-wave splitting at different frequency bands is analyzed. The results show that the delay time and the fast polarization directions of S-wave splitting depend upon the frequency bands. There is an absence of S-wave splitting at the station of Urumqi (WMQ) for the band of 0.1–0.2 Hz. With the frequency band broadening, the delay time of S-wave splitting decreases at the stations of Beijing (BJI), Enshi (ENH), Kunming (KMI) and Mudanjiang (MDJ); the fast polarization direction changes from westward to eastward at Enshi (ENH), and from eastward to westward at Hailaer (HIA). The variations of delay time with bands at Lanzhou (LZH) and Qiongzhong (QIZ) are similar, and there is a coherent trend of fast polarization directions at BJI, KMI and MDJ, respectively. Initial interpretations to the results of frequency band-dependence of S-wave splitting are also presented.  相似文献   

16.
There are two main sources of non-orthogonality in multicomponent shear-wave seismics: inherent non-orthogonal split shear waves arising from substantial ray deviation in off-symmetry planes due to strong anisotropy or complex overburden, and apparent non-orthogonal split shear waves in the horizontal plane due to variation of the angle of incidence even if the two shear waves along the raypath are orthogonal. Many techniques for processing shear-wave splitting in VSP data ignore these kinds of non-orthogonality of the split shear waves. Assuming inherent non-orthogonality in zero-offset VSPs, and apparent non-orthogonality in offset VSPs, we derive equations for the four-component data matrix. These can be solved by extending the linear-transform technique (LTT) to determine the shear-wave polarizations in zero-offset and offset VSPs. Both full-wave synthetic and field data are used to evaluate the technique and to examine the effects of non-orthogonal polarized split shear waves. If orthogonality is incorrectly assumed, errors in polarization measurements increase with the degree of non-orthogonality, which introduces a consistent decreasing trend in the polarization measurements. However, the effect of non-orthogonality on the estimation of geophone orientation and time delays of the two split shear waves is small and negligible in most realistic cases. Furthermore, for most cases of weak anisotropy (less than 5% shear-wave anisotropy) apparent non-orthogonality is more significant than inherent non-orthogonality. Nevertheless, for strong anisotropy (more than 10% shear-wave anisotropy) with complicated structure (tilted or inclined symmetry axis), inherent non-orthogonality may no longer be negligible. Applications to both synthetic and real data show that the extended linear-transform techniques permit accurate recovery of polarization measurements in the presence of both significant inherent and apparent non-orthogonality where orthogonal techniques often fail.  相似文献   

17.
The Shimian area of Sichuan sits at the junction of the Bayan Har block, Sichuan-Yunnan rhombic block, and Yangtze block, where several faults intersect. This region features intense tectonic activity and frequent earthquakes. In this study, we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region. We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area. Although some stations returned a polarization direction of NNW-SSE, a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area. The polarization directions of the fast shear wave were highly consistent throughout the study area. This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults. The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures. The mean delay time between fast and slow shear waves was 3.83 ms/km, slightly greater than the values obtained in other regions of Sichuan. This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.  相似文献   

18.
本文采用质点运动判别与偏振分析相结合的方法对2019年四川长宁MS6.0地震震源区10个台站于2013年4月25日至2019年7月31日记录到的波形数据进行S波分裂参数测定,其中9个台站获取4条以上有效S波分裂参数.结果表明,震源区各台站的S波分裂参数不仅在空间上存在分区特征,还会随时间发生改变.快波偏振方向在空间上的...  相似文献   

19.
Analysing S-wave splitting has become a routine step in processing multicomponent data. Typically, this analysis leads to determining the principal directions of a transversely isotropic medium with a horizontal symmetry axis, which is assumed to be responsible for azimuthal anisotropy, and to the time delays between the fast and slow S-waves. These parameters are commonly estimated layer-by-layer from the top. Errors in layer stripping occurring in shallow layers might propagate to deeper layers. We propose a method for S-wave splitting analysis and compensation that consists of inverting interval values of splitting intensity to obtain a model of anisotropic parameters that vary with time and/or depth. Splitting intensity is a robust attribute with respect to structural variations and is commutative, which means that it can be summed along a ray (or throughout a sensitivity kernel volume) and can be linearly related to anisotropic perturbations at depth. Therefore, it is possible to estimate anisotropic properties within a geological formation (e.g. the reservoir) by analysing the differences of splitting intensity measured at the top and at the bottom of the layer. This allows us to avoid layer stripping, in particular, for shallow layers where anisotropic parameters are difficult to estimate due to poor coverage, and it makes S-wave splitting analysis simpler to apply. We demonstrate this method on synthetic and real data. Because the splitting intensity attribute shows usefulness in S-wave splitting analysis in transversely isotropic media, we extend the splitting intensity theory to lower symmetry classes. It enables the characterization of tilted transversely isotropic and tilted orthorhombic media, opening new opportunities for anisotropic model building.  相似文献   

20.
Shear waves can provide valuable information about seismic anisotropy. On entering an anisotropic medium, a shear wave generally splits (shear-wave splitting) into a fast and a slow quasi-shear wave with polarizations fixed by the elastic properties of the medium and direction of travel. If the medium contains planar discontinuities with common normals, the fast shear wave will be suitably propagated if its polarization lies in the plane of the discontinuities. Measuring this polarization, using a VSP geometry with oriented three-component geophones in the borehole, offers the possibility of monitoring the orientation and density of the discontinuities as a function of depth. Such a shear-wave VSP was carried out in an uncased 0.3 m diameter borehole drilled to a depth of 120 m in the north of The Netherlands. The upper 80 m of the sequence, consisting of a glacial till and sands and clays of Pleistocene age, was studied. The clays in this sequence have been subjected to glacial deformation and as a result are overconsolidated and locally fissured. In our shallow VSP experiment, shear-wave splitting and therefore anisotropy was identified at various geophone depths for one source offset. Hodograms showed a consistent polarization of the fast shear-wave component over a large depth interval. Under the assumption that the anisotropy was caused by planar discontinuities with common normals, this polarization direction gives the strike of the fissures in this interval. The polarization direction of the fast S-wave did not correspond exactly with the strike which was obtained from geological information on the fissures. The geological information was from undisturbed oriented 70 mm core samples taken at 3 m intervals in the borehole. The discrepancy, however, could be explained in terms of dipping fissures, and such a dip was confirmed by the geological and geotechnical information. The orientation of fissures is an important factor in the directional deformation and strength characteristics of clays as far as geotechnical behaviour is concerned. This study thus illustrates a practical application of shear-wave splitting observed in shallow shear-wave VSP for geology and geotechnical engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号