首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Some of the properties of singularities of a system of differential equations, which includes several formulations of the artificial Earth satellite problem, are derived. Using them, it is shown that this problem cannot be regularized by using the current commonly used ideas and definitions of regularization.  相似文献   

3.
We consider the main problem in satellite theory restricted to the polar plane. For suitable values of the energy the system has two unstable periodic orbits. We classify the trajectories in terms of their ultimate behavior with respect these periodic orbits in: oscillating, asymptotic and capture orbits. We study the energy level set and the existence and properties of the mentioned types of motion.  相似文献   

4.
The classical problem of the critical inclination in artificial satellite theory has been extended to the case when a satellite may have an arbitrary, significant mass and the rotation momentum vector is tilted with respect to the symmetry axis of the planet. If the planet’s potential is restricted to the second zonal harmonic, according to the assumptions of the main problem of the satellite theory, two various phenomena can be observed: a critical inclination that asymptotically tends to the well known negligible mass limit, and a critical tilt that can be attributed to the effect of transforming the gravity field harmonics to a different reference frame. Stability of this particular solution of the two rigid bodies problem is studied analytically using a simple pendulum approximation.  相似文献   

5.
6.
We consider an elliptic restricted four-body system including three primaries and a massless particle. The orbits of the primaries are elliptic, and the massless particle moves under the mutual gravitational attraction. From the dynamic equations, a quasi-integral is obtained, which is similar to the Jacobi integral in the circular restricted three-body problem (CRTBP). The energy constant \(C\) determines the topology of zero velocity surfaces, which bifurcate at the equilibrium point. We define the concept of Hill stability in this problem, and a criterion for stability is deduced. If the actual energy constant \(C_{\mathrm{ac}}\ ( {>} 0 ) \) is bigger than or equal to the critical energy constant \(C_{\mathrm{cr}}\), the particle will be Hill stable. The critical energy constant is determined by the mass and orbits of the primaries. The criterion provides a way to capture an asteroid into the Earth–Moon system.  相似文献   

7.
Analytical integration in Artificial Satellite Theory may benefit from different canonical simplification techniques, like the elimination of the parallax, the relegation of the nodes, or the elimination of the perigee. These techniques were originally devised in polar-nodal variables, an approach that requires expressing the geopotential as a Pfaffian function in certain invariants of the Kepler problem. However, it has been recently shown that such sophisticated mathematics are not needed if implementing both the relegation of the nodes and the parallax elimination directly in Delaunay variables. Proceeding analogously, it is shown here how the elimination of the perigee can be carried out also in Delaunay variables. In this way the construction of the simplification algorithm becomes elementary, on one hand, and the computation of the transformation series is achieved with considerable savings, on the other, reducing the total number of terms of the elimination of the perigee to about one third of the number of terms required in the classical approach.  相似文献   

8.
It is well known that in artifical satellite theory special techniques must be employed to construct a formal solution whenever the orbital inclination is sufficiently close to the critical value cos–1 (1/5). In this article the authors investigate the consequences of introducing certain relativistic effects into the motion of a satellite about an oblate primary. Particular attention is paid to the critical inclination(s), and for such critical motions an appropriate method of solution is formulated.  相似文献   

9.
The set of canonical redundant variables previously introduced by the first author is derived from Cartesian coordinates in a simplified form which allows the reduction of the Kepler problem to four harmonic oscillators with unit frequency. The coordinates are defined to be the direction cosines of the position of the particle along with the inverse of its distance. True anomaly is the new independent variable. The behavior of this new transformation is studied when applied to the numerical integrations of the main problem in satellite theory. In particular, computation time and accuracy of orbits in the new variables are compared with those in K-S and Cartesian variables. It is noteworthy that for high eccentricities the new variables require the least computation time for comparable accuracy, regardless of the integration scheme.  相似文献   

10.
A satellite four-body problem is the problem of motion of an artificial satellite of a planet in a region of the space where perturbations due to the gravitational field of the planet are of the same order as perturbations due to influences of two perturbing bodies. In this paper an expansion of the perturbing function into a Fourier series in terms of angular Keplerian elements ( j , j ,M j :j=0,1,2) (designations are standard) is obtained taking into account a sharp commensurability of the typen/ 0=(p+q)/p (n is the mean motion of the artificial satellite and 0 is the angular velocity of rotation of the planet,p andq are integers).The coefficients of the Fourier series are the functions of the positional Keplerian elements (a j ,e j ,i j ;j=0, 1, 2) (designations are standard) and, in particular, are series in terms ofe j that, generally speaking, can be written out to an accuracy ofe j 19 .The expansion obtained can be used for the construction of a semianalytical theory of motion of resonant satellites on the basis of conditionally periodic solutions of the restricted four-body problem.  相似文献   

11.
We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (theJ 2 problem). The periodic orbits have been classified according to their stability and the Poincaré surfaces of section computed for different values ofJ 2 andH (whereH is thez-component of angular momentum). The problem was scaled down to a fixed value (–1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincaré first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclincation. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values ofJ 2, as large as |J 2|=0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.  相似文献   

12.
The well-known twice-averaged Hill problem is considered by taking into account the oblateness of the central body. This problem has several integrable cases that have been studied qualitatively by many scientists, beginning with M.L. Lidov and Y. Kozai. However, no rigorous analytical solution can be obtained in these cases due to the complexity of the integrals. This paper is devoted to studying the case where the equatorial plane of the central body coincides with the plane of its orbital motion relative to the perturbing body, while the satellite itself moves in a polar orbit. A more detailed qualitative study is performed, and an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of the eccentricity and pericenter argument of the satellite orbit is proposed. The methodical accuracy for the polar orbits of lunar satellites has been estimated by comparison with the numerical solution of the system.  相似文献   

13.
A problem of attitude motion of the smallest body for the restricted three-body problem is analyzed. Axial symmetry is assumed for the body, and attention is focused on the case in which the symmetry axis is normal to the orbit plane. For libration point satellites, results are similar to those for a satellite in orbit about a single body. However, for orbit equilibrium points lying on the line joining the two larger bodies, attitude stability results depart markedly from those for the two-body problem.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

14.
In the zonal problem of a satellite around the Earth, we continue numerically natural families of periodic orbits with the polar component of the angular momentum as the parameter. We found three families; two of them are made of orbits with linear stability while the third one is made of unstable orbits. Except in a neighborhood of the critical inclination, the stable periodic (or frozen) orbits have very small eccentricities even for large inclinations.  相似文献   

15.
In this paper the photogravitational circular restricted problem of three bodies is considered. We have assumed that one of the finite bodies be a spherical luminous and the other be a triaxial nonluminous body. The possibility of existence of the libration points be studied.  相似文献   

16.
This paper is concerned with an extension of the classical restricted problem of three bodies in three dimensions. Usually, the satellite is considered to be a point mass. Here, the satellite is assumed to have a simple structure. The equations of motion are obtained and some of their consequences are discussed.  相似文献   

17.
We have analysed LAGEOS II perigee rate and eccentricity vector excitation residuals over a period of about 7.8 years, adjusting and computing the satellite orbit with the full set of dynamical models included in the GEODYN II software code. The long-term behaviour of these orbital residuals appears to be characterised by several distinct frequencies which are a clear signature of the Yarkovsky-Schach perturbing effect. This non-gravitational perturbation is not included in the GEODYN II models for the orbit determination and analysis. Through an independent numerical analysis, and using the new LOSSAM model to represent the spin-axis behaviour of the satellite, we propagated the Yarkovsky-Schach effect on LAGEOS II perigee rate and compared the results obtained with the orbital residuals. We have thus been able to satisfactorily fit the amplitude of the Yarkovsky-Schach effect to the observed residuals. Our approach here has proven very successful with very positive results. We have been able to obtain a fractional reduction of about 40% of the post-fit rms with respect to the pre-fit value. When analysing the eccentricity vector residuals, we have been able to obtain a better result in the case of the real component, with a fractional reduction of the post-fit rms of about 49% of the initial value. The analysis of the effect's imaginary component in the eccentricity vector rate is more complicated and deserves additional scrutiny. In this case we need a deeper study which includes the analysis of other unmodelled and mismodelled effects acting on the imaginary component. The study performed in this paper will be of significant relevance not only for the geophysical applications involving LAGEOS II orbit analysis, but also for a refined re-analysis of the general relativistic precession produced by the Earth angular momentum, i.e., the Lense-Thirring effect.  相似文献   

18.
This paper presents the Taylor series method for integration of differential equations describing the rotational motion of a rigid satellite. We compared the presented algorithm with other methods, and we show that it gives the most accurate results with reasonable efficiency.  相似文献   

19.
In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.  相似文献   

20.
The variations of perturbations in perigee distance for different values of the orbital eccentricity for artificial Earth's satellites due to air drag have been studied. The analytical solution of deriving these perturbations, using the TD model (Total Density) have been applied, Helali (1987). The Theory is valid for altitudes ranging from 200 to 500 km above the Earth's surface and for solar 10.7 cm flux. Numerical examples are given to illustrate the variations of the perturbations in perigee distance with changing eccentricity (e < 0.2). A stronge perturbations in the perigee distance have been shown when the eccentricity in the range 0.001 <e < 0.05, especially for perigee distance 200 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号