首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three wells in New Hampshire were sampled bimonthly over three years to evaluate the temporal variability of arsenic concentrations and groundwater age.All samples had measurable concentrations of arsenic throughout the entire sampling period and concentrations in individual wells had a mean variation of more than 7 μg/L.The time series data from this sampling effort showed that arsenic concentrations ranged from a median of 4 μg/L in a glacial aquifer well(SGW-65)to medians of 19μg/L and37 μg/L in wells(SGW-93 and KFW-87)screened in the bedrock aquifer,respectively.These high arsenic concentrations were associated with the consistently high pH(median≥8)and low dissolved oxygen(median0.1 mg/L)in the bedrock aquifer wells,which is typical of fractured crystalline bedrock aquifers in New Hampshire.Groundwater from the glacial aquifer often has high dissolved oxygen,but in this case was consistently low.The pH also is generally acidic in the glacial aquifer but in this case was slightly alkaline(median = 7.5).Also,sorption sites may be more abundant in glacial aquifer deposits than in fractured bedrock which may contribute to lower arsenic concentrations.Mean groundwater ages were less than 50 years old in all three wells and correlated with conservative tracer concentrations,such as chloride;however,mean age was not directly correlated with arsenic concentrations.Arsenic concentrations at KFW-87 did correlate with water levels,in addition,there was a seasonal pattern,which suggests that either the timing of or multiple sampling efforts may be important to define the full range of arsenic concentrations in domestic bedrock wells.Since geochemically reduced conditions and alkaline pHs are common to both bedrock and glacial aquifer wells in this study,groundwater age correlates less strongly with arsenic concentrations than geochemical conditions.There also is evidence of direct hydraulic connection between the glacial and bedrock aquifers,which can influence arsenic concentrations.Correlations between arsenic concentrations and the age of the old fraction of water in SGW-65 and the age of the young fraction of water in SGW-93 suggest that water in the two aquifers may be mixing or at least some of the deeper,older water captured by the glacial aquifer well may be from a similar source as the shallow young groundwater from the bedrock aquifer.The contrast in arsenic concentrations in the two aquifers may be because of increased adsorption capacity of glacio-fluvial sediments,which can limit contaminants more than fractured rock.In addition,this study illustrates that long residence times are not necessary to achieve more geochemically evolved conditions such as high pH and reduced conditions as is typically found with older water in other regions.  相似文献   

2.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

3.
Groundwater resources are vulnerable to contamination especially in shallow aquifers. The aquifer hydrogeological parameters and the Land Uses category combinations lead to subdivide areas according to their contamination likelihood. In arid and semi-arid regions, shallow aquifers are more exposed to groundwater contamination due to high population densities (extensive uses) and agricultural activities (nitrate contamination). Moreover, these regions are characterized by low rainfall and high evaporation. Furthermore, the spread of farmland, industrial and domestic sectors, is the principal contaminant producer which threats the groundwater quality. To protect these limited resources, the groundwater vulnerability assessment was developed in Maritime Djeffara shallow aquifer (Southeastern Tunisia). The study area is essentially occupied by agricultural areas (intensive use of chemical fertilizers) in addition to the discharge of industrial zones. The main objective of this study is to assess the aquifer vulnerability using the Susceptibility Index (SI) method as a specific vulnerability model. The results show that the study area is classified into five classes of vulnerability: very low, low, medium, high, and very high (1.54, 20, 41.54, 35.9, and 1.02%, respectively) with an uneven spatial distribution. The risk results exhibit three degrees: low, moderate, and high. The validation of the vulnerability model was performed by using salinity values and nitrate concentrations with a correlation coefficient of about 57 and 55%, respectively. This study could serve as a scientific basis for sustainable land use planning and groundwater management in the study area.  相似文献   

4.
Groundwater samples from 288 domestic wells in Barry County, Michigan, were analyzed for 33 inorganic chemical parameters. Variations in chemical composition were investigated by considering the possible effects of human impact, aquifer type (bedrock vs glacial drift), chemical evolution along groundwater flow paths, and glacial landform type (moraine vs outwash). Approximately 25 percent of the glacial drift wells were classified as degraded by human impact and were excluded from further analysis of chemical variation. Two-sample tests comparing individual concentrations from drift and bedrock aquifers suggest that groundwater in the Marshall Sandstone aquifer is derived from local recharge through the glacial drift. This conclusion is supported by generalized groundwater flow patterns recognized for the two aquifers.Concentrations in both aquifers were examined in relation to generalized flow paths derived from water level data and also by classification of wells as recharge, transition, and discharge. No spatial concentration trends in major ions were detected, although iron concentrations do appear to increase from recharge to discharge areas. Declining redox potential along groundwater flow paths may explain this trend.The possible influence of glacial landform type was investigated by comparing concentrations of wells in moraines with those in outwash deposits. Wells in moraines have significantly higher concentrations of most parameters, perhaps due to higher content of finer, more chemically reactive sediment grains.  相似文献   

5.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

6.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

7.
Several natural and anthropogenic tracers have been used to evaluate groundwater residence time within a karstic limestone aquifer in southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge, on the northeast margin of the Roswell Artesian Basin. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for threatened and endangered species, there is concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding karst conduit flow. A better understanding of groundwater residence time is required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results indicate that the artesian aquifer contains a significant component of water recharged within the last 10–50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.  相似文献   

8.
A 480-square-mile region within Will County, in northeastern Illinois, was used as a test region for the development of a methodology to map the sensitivity of aquifers to contamination. An aquifer sensitivity model was developed using a geographic information system (GIS) to overlay and combine several data layers. The components used for our model are: (1) depth to sand and gravel or bedrock, (2) thickness of the uppermost sand and gravel aquifer, (3) glacial drift thickness, and (4) bedrock geology. The model is an improvement over many previous aquifer sensitivity models because it combines specific information on depth to the uppermost aquifer with information on the thickness of the uppermost sand and gravel aquifer. This county-wide model results in an aquifer sensitivity map that can be a useful tool for making land-use planning decisions regarding aquifer protection and management of groundwater resources.  相似文献   

9.
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ‘safe separation’ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale–aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.  相似文献   

10.
Widespread agricultural activity may threaten water quality in fractured bedrock aquifers having little overburden protection. A study in Canada improves the understanding of the potential impact of agriculture on water quality in bedrock aquifers, focusing on spatial and temporal variability of nitrate and bacteria. A research site was developed in and adjacent to a hay field where a gneissic aquifer is overlain by a thin veneer of unconsolidated glacial material. Ten wells were installed, hydraulically tested and completed as multilevel piezometers. Results of monthly sampling for nitrate, dissolved organic carbon, and E. coli show significant temporal and spatial variation in concentrations. Intensive 5-day sampling rounds conducted during baseflow and recharge conditions indicate that bacterial concentrations vary daily, with higher concentrations during recharge periods. The location of the impacted monitoring wells is correlated to an upgradient cattle pasture that is used periodically each summer. It is evident that periodic upgradient sources, dilution from recharge, and heterogeneous flow systems lead to varied and unpredictable contaminant concentrations. The temporal and spatial variability of contaminants in bedrock aquifers with minimal overburden must be considered for the protection of human health, as annual or even monthly groundwater monitoring may not capture unsafe concentrations.  相似文献   

11.
The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985–2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.  相似文献   

12.
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.  相似文献   

13.
Hydrologic conceptual models of groundwater/surface-water interaction in a saprolite-fractured bedrock geological setting often assume that the saprolite zone is hydraulically more active than the deeper bedrock system and ignore the contribution of deeper groundwater from the fractured bedrock aquifer. A hydraulic, hydrochemical, and tracer-based study was conducted at Scott Creek, Mount Lofty Ranges, South Australia, to explore the importance of both the deeper fractured bedrock aquifer system and the shallow saprolite layer on groundwater/surface-water interaction. The results of this study suggest that groundwater flow in the deeper fractured bedrock zone is highly dynamic and is an important groundwater flow pathway along the hillslope. Deep groundwater is therefore a contributing component in streamflow generation at Scott Creek. The findings of this study suggest that hydrologic conceptual models, which treat the saprolite-fractured bedrock interface as a no-flow boundary and do not consider the deeper fractured bedrock in hydrologic analyses, may be overly simplistic and inherently misleading in some groundwater/surface-water interaction analyses. The results emphasise the need to understand the relative importance of subsurface flow activity in both of these shallow saprolite and deeper bedrock compartments as a basis for developing reliable conceptual hydrologic models of these systems.  相似文献   

14.
左文喆  任永强  杨豹  刘帅洲 《地球科学》2020,45(4):1427-1438
为了解沉积变质型铁矿床开采后矿区地下水化学特征的变化趋势,在充分掌握矿区含水系统划分和流动系统发育规律的基础上,通过对四含上、四含下、基岩含水层148个水样常规离子的相关性、水化学类型及公因子的分析,得出水化学类型分区和公因子得分等值线,将二者叠加,分析各含水层潜在的形成作用及其控制因素.研究结果表明,四含上以碳酸盐溶滤、污染、氧化作用为主;四含下以污染、溶滤、局部脱硫酸作用为主;基岩含水层以离子交换吸附、第四系水的混合、硅酸盐矿物的不全等溶解作用为主.除了背景因素外,矿山开采后的三维流场控制了基岩含水层的形成作用和原生水化学类型,影响了第四系含水层的局部形成作用,水化学类型分区界线明显移动.   相似文献   

15.
天然成因的高氟地下水是世界范围内备受关注的环境问题和饮用水安全问题。前人对高氟地下水的形成过程已开展了大量研究,但是对于高原盆地复杂水文地质条件下不同类型含水层组(第四系松散层含水层、基岩裂隙或岩溶含水层以及新生代古近纪以来的碎屑岩含水层)高氟地下水的分布和形成过程尚不明确。本文以化隆—循化盆地为研究区,通过采集、测试研究区内的各类地下水样品,分析研究区内不同类型含水层中地下水的化学特征及同位素特征。结果表明,高氟地下水(1.007.73 mg/L)主要分布在沿黄河的河谷区域和巴燕低山丘陵区域的泉水和潜水中以及深部的承压水中,在垂向上高氟地下水无明显分布规律。接受黄河水入渗补给的河谷潜水中氟离子浓度较低,补给黄河的河谷潜水中氟离子浓度较高。贫钙富钠的弱碱性苏打型水有利于地下水中氟的富集。泉水和潜水中氟主要来源于萤石的溶解,而承压水中氟除了来源于萤石外,还来源于其他含氟矿物。对于潜水和第四系松散层泉水,蒸发浓缩作用促进了地下水中氟的富集。另外,阴离子竞争吸附作用、阳离子交换吸附作用是泉水(第四系松散层泉水和基岩裂隙泉水)和潜水中氟元素富集的主要原因,而承压水中氟离子浓度受竞争吸附作用影响较大,阳离子交换吸附作用影响较小。研究成果可为化隆—循化盆地低氟地下水的勘查和开发提供科学依据。  相似文献   

16.
Waterborne pathogens represent a significant health risk in both developed and developing countries with sensitive sub-populations including children, the elderly, neonates, and immune-compromised people, who are particularly susceptible to enteric infections. Annually, approximately 1.8 billion people utilize a faecally contaminated water source, and waterborne diseases are resulting in up to 2.1 million human mortalities globally. Although groundwater has traditionally been considered less susceptible to contamination by enteric pathogens than surface water due to natural attenuation by overlying strata, the degree of microbial removal attributable to soils and aquifers can vary significantly depending on several factors. Thus, accurate assessment of the variable presence and concentration of microbial contaminants, and the relative importance of potentially causative factors affecting contaminant ingress, is critical in order to develop effective source (well) and resource (aquifer) protection strategies. “Traditional” and molecular microbiological study designs, when coupled with hydrogeological, hydrochemical, isotopic, and geophysical methods, have proven useful for analysis of numerous aspects of subsurface microbial dynamics. Accordingly, this overview paper presents the principal microbial techniques currently being employed (1) to predict and identify sources of faecal contamination in groundwater, (2) to elucidate the dynamics of contaminant migration, and (3) to refine knowledge about the hydrogeological characteristics and behaviours of aquifer systems affected by microbial contamination with an emphasis on carbonate aquifers, which represent an important global water supply. Previous investigations carried out in carbonate aquifers in southern Italy are discussed.  相似文献   

17.
 Anthropogenic activities create various contaminated leachate, which can migrate downward from the vadose zone to groundwater, transferring contaminants, including some hazardous ones. When these various sources of contamination influence the groundwater aquifer simultaneously, the effects of contamination are enhanced. The major concern of this study has been to determine whether the shape of a groundwater chlorograph might be the result of such deterministic effects as accumulation of one or more particular processes of groundwater contamination, and how this might relate to specific hydrological situations. This study proposes a classification of groundwater contamination on the basis of properties of the main components of groundwater quality graphs and the corresponding hydrogeological/environmental situation. The study further suggests that contamination of groundwater in any hydrogeological situation (e.g. sea water) may be graphically expressed. A variety of chlorographs and nitrographs, representative of various groundwater aquifers sampled from a number of wells throughout Israel attest to this. The study thus indicates that groundwater quality graphs may be considered as a complementary tool for groundwater quality control and better understanding aquifer situations.  相似文献   

18.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

19.
The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.  相似文献   

20.
The texture and three-dimensional framework of geologic materials should be considered in assessments of groundwater's vulnerability to contamination because geology controls the movement of contaminants and groundwater and influences groundwater quality. Contaminants are introduced into, transmitted through, and stored by geologic materials. We present a model that identifies aquifers and ranks sequences of geologic materials by their relative potential for transmitting water and contaminants from land surface. With this basis, the model can be used to assess the potential for contamination of aquifers by surface activities such as landfitling of wastes or application of agricultural chemicals. A regional map of aquifer contamination potential can be generated from the model; it retains the geologic map information intact and available for reinterpretation or other uses.The model was developed using broad, regional map information and is intended to be a general tool for assessing the regional vulnerability of aquifers to contamination. It is not intended for local, site-specific use, but for prioritizing local areas where contamination potential and/or land-use history warrant more detailed assessment or monitoring. Because it provides a regional view of contamination potential, regional patterns or trends of map units should be evaluated, rather than using the map information literally to assess local areas. Methods of applying this model and contamination potential map to groundwater protection and management are currently being studied; research includes an attempt to statistically validate the model with water-quality data, and to identify natural groupings of the ranked contamination potential map units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号