共查询到20条相似文献,搜索用时 31 毫秒
1.
巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较 总被引:2,自引:0,他引:2
从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果. 相似文献
2.
Increases in nitrate loading to the Mississippi River watershed during the last 50 years are considered responsible for the increase in hypoxic zone size in Louisiana-Texas shelf bottom waters. There is currently a national mandate to decrease the size of the hypoxic zone to 5000 km2 by 2015, mostly by a 30% reduction in annual nitrogen discharge into the Gulf of Mexico. We developed an ecosystem model for the Mississippi River plume to investigate the response of organic matter production and sedimentation to variable nitrate loading. The nitrogen-based model consisted of nine compartments (nitrate, ammonium, labile dissolved organic nitrogen, bacteria, small phytoplankton, diatoms, micro- and mesozooplankton, and detritus), and was developed for the spring season, when sedimentation of organic matter from plume surface waters is considered important in the development of shelf hypoxia. The model was forced by physical parameters specified along the river-ocean salinity gradient, including residence time, light attenuation by dissolved and particulate matter, mixed layer depth, and dilution. The model was developed using measurements of biological biomasses and nutrient concentrations across the salinity gradient, and model validation was performed with an independent dataset of primary production measurements for different riverine NO3 loads. Based on simulations over the range of observed springtime NO3 loads, small phytoplankton contributed on average 80% to primary production for intermediate to high salinities (>15), and the main contributors to modeled sedimentation at these salinities were diatom sinking, microzooplankton egestion, and small phytoplankton mortality. We investigated the impact of limiting factors on the relationship between NO3 loading and ecosystem rates. Model results showed that primary production was primarily limited by physical dilution of NO3, followed by abiotic light attenuation, light attenuation due to mixing, and diatom sinking. Sedimentation was mainly limited by the first three of these factors. Neither zooplankton grazing or plume residence times acted as limiting factors of ecosystem rates. Regarding nutrient reductions to the watershed, simulations showed that about half of the percent decrease in NO3 load was reflected in decreased plume sedimentation. For example, a 30% decrease in NO3 load resulted in a 19% decrease in average plume primary production and a 14% decrease in sedimentation. Finally, our model results indicated that the fraction of primary production exported from surface waters is highly variable with salinity (7–87%), a finding which has important implications for predictive models of hypoxic zone size that assume a constant value for this ratio. 相似文献
3.
Farming of wild tuna in coastal areas is a relatively new aquaculture industry and little is known about the magnitude of nutrient discharges to the environment. In this work we present a preliminary model of nitrogen loads from southern bluefin tuna (Thunnus maccoyii) aquaculture in lower Spencer Gulf, South Australia. The model was developed based on feed inputs, estimates of fish metabolism and environmental data. Two pens were monitored over a full grow-out season to determine nitrogen sedimentation fluxes, remineralization at the sediment-water interface and accumulation in the sediments. The model suggests that the high metabolic rates of tuna lead to low retention of nitrogen in fish tissues (7-12% of feed inputs) and high environmental losses (260-502kg Ntonne(-1) growth). Considering Australian annual production of 4380tonnes over initial stocked biomass, total loads can reach 1137tonnes N per year, 86-92% lost as dissolved wastes. The nature of wastes suggests low localized impacts at current stocking densities and holding periods. 相似文献
4.
Alexandra M.F. Rao Mark J. McCarthy Wayne S. Gardner Richard A. Jahnke 《Continental Shelf Research》2007
Nitrogen (N) cycling and respiration rates were measured in sediment columns packed with southeastern United States continental shelf sands, with high permeability (4.66×10−11 m2) and low organic carbon (0.05%) and nitrogen (0.008%). To simulate porewater advection, natural shelf seawater was pumped through columns of different lengths to achieve fluid residence times of approximately 3, 6, and 12 h. Experiments were conducted seasonally at in situ temperature. Fluid flow was uniform in nearly all columns, with minimal dead zones and channeling. Significant respiration (O2 consumption and ∑CO2 production) occurred in all columns, with highest respiration rates in summer. Most (78–100%) remineralized N was released as N2 in the majority of cases, including columns with oxic porewater throughout, with only a small fraction released as NO3− from some oxic columns. A rate of 0.84–4.83×1010 mol N yr−1, equivalent to 1.06–6.09×10−6 mmol N cm−2 h−1, was calculated for benthic N2 production in the South Atlantic Bight, which can account for a large fraction of new N inputs to this shelf region. Metal and sulfate reduction occurred in long residence time columns with anoxic outflow in summer and fall, when respiration rates were highest. Because permeable sediments dominate continental shelves, N2 production in high permeability coastal sediments may play an important role in the global N cycle. 相似文献
5.
Little is known of the processes that create and maintain vernal ponds in mineral soils in alpine environments. On the Central Plateau, Tasmania, we tested the hypotheses that vernal pond complexes on mineral soils formed in response to the underlying topography of a glacio-fluvial plain; relate to present day topography; resulted from past damming by organic accumulation; are moulded by wind. The underlying topography did not relate to the surface ponds, nor were they on steeper slopes than adjacent areas without ponds. The morphology of the ponds and the morphological and edaphic characteristics of the pond complexes and adjacent areas are consistent with an origin by organic material damming. The strongest winds orientate most ponds, rather than the aspect of the slope. Sediments were preferentially caught on sticky traps to the northeast of the ponds, away from fierce prevailing southwesterly winds. Temperature measurements and fortnightly observation showed non-concordant patterns of variation in water levels in the ponds. We deduce that the complexes of vernal ponds may have formed in previous moister conditions more favourable to organic matter accumulation, possibly in the early Holocene, and are maintained by a faster rate of accumulation of mineral and organic particles in the tussock grassland adjacent to the ponds than in the ponds themselves. © 2019 John Wiley & Sons, Ltd. 相似文献
6.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable. 相似文献
7.
David R. Butler 《地球表面变化过程与地形》2012,37(8):876-882
Many beaver ponds in the Rocky Mountains, that have been described in the literature, are in‐channel ponds that are relatively small and short‐lived. This paper describes floodplain beaver ponds on low‐gradient deltas in glacial finger lakes in Glacier National Park, Montana. These ponds are distinctly larger, probably fed by hyporheic flow, and stable and long‐lived. Ponds examined were, with one exception, 44 years old. Glacial discharge is present in each valley where beaver ponds occupy low‐gradient deltas, and this discharge likely sustains pond water level over the course of the summer. As glaciers recede and disappear, deltaic beaver ponds dependent on hyporheic flow may be negatively affected. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
Elisa Soana Erica Racchetti Alex Laini Marco Bartoli Pierluigi Viaroli 《洁净——土壤、空气、水》2011,39(11):956-965
A nitrogen mass balance, realized for the lower Oglio River basin (Po River Plain, northern Italy), suggested an elevated impact of agricultural activities in this watershed. Livestock manure, synthetic fertilizers, biological fixation, atmospheric deposition, and wastewater sludge contributed 51, 34, 12, 2, and 1% of total N (TN) input, respectively (basin average 450 kg N ha?1 arable land (AL) year?1, overall input 100 115 t N year?1). Crop uptake, ammonia volatilization and denitrification in soils contributed 65, 21, and 14%, respectively, of TN output (basin average 270 kg N ha?1 AL year?1, overall output 60 060 t N year?1). N inputs exceeded outputs by 40 056 t N year?1, resulting in a basin average surplus of about 180 kg N ha?1 AL year?1. About 34% of the N surplus was exported annually from the basin while the remaining amount (about 26 800 t N year?1) underwent other unaccounted for processes within the watershed. The relevance of nitrogen removal via denitrification in aquatic compartments within the watershed was evaluated. Denitrification in the secondary drainage network can represent a relevant nitrogen sink due to great linear extension (over 12 500 km), with estimated nitrogen loss up to 8500 t N year?1. Denitrification in the riverbed and in perifluvial wetlands have the potential to remove only a small fraction of the nitrogen surplus (<3%). Evidence suggests the relevance of groundwater as a site of nitrogen accumulation. 相似文献
9.
Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam 总被引:1,自引:0,他引:1
In recent years, antibiotics have been used widely in intensive shrimp culture and this may lead to their contamination of the environment. Surveys on residues of trimethoprim (TMP), sulfamethoxazole (SMX), norfloxacin (NFXC) and oxolinic acid (OXLA) in water and mud in shrimp ponds in mangrove areas were conducted in the north as well as in south of Viet Nam in July and August, 2002. The results show that these antibiotics are found in all samples in both shrimp ponds and surrounding canals. The highest concentrations of TMP, SMX, NFXC and OXLA are 1.04, 2.39, 6.06, and 2.50 ppm in water samples; and 734.61, 820.49, 2615.96, 426.31 ppm (based on wet mud weight), respectively. The comparison of antibiotics residues between study sites and types of shrimp ponds will be discussed in this paper. The results also suggest that antibiotics residues may cause harmful effect on ecosystems in the study sites. 相似文献
10.
Robert Arfi Daniel Guiral Jean-Pascal Torreton 《Aquatic Sciences - Research Across Boundaries》1991,53(1):39-54
Chlorophyll pigments (CHL), primary productivity (PP) and particulate nitrogen (Np) in relation to several environmental factors were monitored during planktonic colonization of an aquaculture pond (Layo, Côte d'Ivoire). How interactions between the organisms are established in an initially azoic environment were investigated. From March, 15 (D1) to March, 31 (D16), the system transformation went through three stages. First, a precolonization by heterotrophic microbial community from D1 to D2 (Np < 1 m maximum at D2: 243 mg m–2; CHL around 0). Then, a pioneer microalgal community developped from D3 to D7 (maximum CHL on D6: 19 mg m–2; PP: 1.0 g C m–2 d–1) with a significant contribution of picoplankton (CHL and PP < 3 m: 33 and 23% of the total, respectively). Finally, a second microalgal colonization was noticed from D9 to D12 (maximum CHL: 55 mg m–2, PP: 2.8 g C m–2 d–1), largely dominated by nanoplankton (CHL and PP > 3 m: 95 and 99% of the total, respectively). Overall, photosynthetic activity appeared to be closely linked to algal biomass. The study of autotrophic biomass and activity in different size classes in relation to the other parameters allowed us to precise the origin of the biomass fluctuations. The first bloom appeared to be controlled by selective grazing on small algae. The second algal development ended when N requirement represented at least 69% of N supply (in the N — NH4 form). This control was enhanced by the appearance of rotifers, leading to a more complex equilibrium. 相似文献
11.
三江平原沼泽地主养鲤鱼塘能量转换效率研究 总被引:1,自引:0,他引:1
对1988~1992年三江平原沼泽地泥炭池主养鲤鱼生态系统的能量转换效率进行了研究分析。结果表明,一个生长期浮游植物毛初级生产力对太阳辐射能的转换效率为0.204~0.308%;鲢鳙净产量对浮游植物净产量的转换效率为1.195~4.815%;太阳能转换为鱼类总净产量的生态学效率为0.067~0.123%。总辅助能、总生物能和饲料辅助能转换为鱼类总净产量的效率分别为8.91~14.05%、10.96~17.20%和11.06~17.57%.在2500kg/hm~2、3500kg/hm~2及5000kg/hm~2三个净产量级型池塘中,以5000kg/hm~2产量级的能量转换效率为最佳型。 相似文献
12.
《Limnologica》2020
Terrestrial ecosystems contribute many different forms of organic matter to adjacent waterbodies. Carbon, nitrogen, and phosphorus in this material can significantly influence the planktonic communities of these systems, especially where there is a large proportion of contributing area relative to waterbody size and where nutrients are generally in short supply. Plant pollen, which upon degradation releases nutrients into the water column, is one such source of allochthonous material. In Cape Cod (Massachusetts, USA), large amounts of pollen from dense pitch pine (Pinus rigida L.) forest are deposited in late spring into small, freshwater lakes scattered across the landscape. This study examines in vivo chlorophyll fluorescence responses of surface-water samples collected from three such lakes within Cape Cod National Seashore (Wellfleet and Truro) to additions of P. rigida pollen in a laboratory setting. The results indicate that where influxes are high enough, pollen can have a stimulatory effect on phytoplankton communities and is a short-term nutrient subsidy in these systems at a time of year (May-June) when warming temperatures and faster growth rates elevate the demand for nutrients. 相似文献
13.
14.
水产养殖清塘过程中的排水是造成周边水环境污染的重要环节,但对此环节中污染物排放特征和影响程度的研究仍相对不足。为有效减少清塘过程的排水对环境的污染,推进水产养殖业绿色发展,本研究选取典型鱼类集约化养殖区,通过高频采样和监测,分析了阶段式排水时混养鱼塘尾水中的悬浮物、有机物和营养盐等指标的浓度变化,明确污染物的排放特征,同时分析受纳水体不同断面的水质变化情况。研究结果表明:总悬浮物浓度(TSS)、高锰酸盐指数(CODMn)、总磷(TP)、总氮(TN)和氨氮(NH3-N)浓度随着持续排水呈上升趋势,在排水末期污染物浓度均快速上升,磷酸盐磷(PO43--P)浓度仅在排水末期骤升,硝态氮(NO3--N)浓度随排水持续下降,亚硝态氮(NO2--N)浓度随排水先上升后下降;根据《淡水池塘养殖水排放要求》二级标准,排水末期TN、TP、TSS浓度超标倍数分别达4.70、6.66、206.90;尾水流量与河流量约以1/200的比例... 相似文献
15.
改良型生物稳定塘对滇池流域受污染河流净化效果 总被引:4,自引:1,他引:4
对滇池流域大清河生物稳定塘系统中的水质净化效果进行了分析,同时对各塘中的浮游藻类种类组成、细胞密度和多样性进行了调查。结果表明,当污水流经预处理塘、好氧塘、水生植物塘、养殖塘的过程中,pH、DO、叶绿素a浓度呈逐渐上升趋势,TN、TP、NH_4~+-N、BOD_5和COD浓度呈逐渐下降趋势,生物稳定塘系统对TN、TP、NH_4~+-N、BOD_5和COD的去除率分别达29.29%,48.68%,33.68%,68.14%和71.25%。叶绿素a浓度和pH(r=0.955,P0.05)、DO(r=0.992,P0.01)显著正相关,而和TN(r=-0.936,P0.05)、TP(r=-0.925,P0.05)以及NH_4~+-N(r=-0.927,P0.05)等显著负相关。在塘系统中,共出现浮游藻类53种,藻类种类数和生物多样性呈增加趋势,总细胞密度呈下降趋势;塘系统中共出现6种藻类优势种,其中绿色微囊藻和惠氏微囊藻细胞密度呈现出逐渐下降的趋势,梅尼小环藻、啮蚀隐藻、美丽网球藻和球囊藻细胞密度呈现出逐渐上升的趋势。 相似文献
16.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。 相似文献
17.
以青藏高原查拉坪地区一处热融湖塘(40 m×50 m,最大深度为1 m)为研究对象,由实测数据对比分析了热融湖塘与天然地表相同深度的温度变化特征.结果表明:与天然地表相比,热融湖塘融化时间长,冻结时间短,且存在接近4℃的水温变化;受太阳辐射及热对流的影响,垂向水温梯度仅在水表从4℃降温及冻结阶段较大,其余时段接近0;湖底年均温度比相同深度的天然地表高约6.4℃,湖底下部存在约14 m深随时间发展的融区,土体吸热增大,放热减小;热融湖塘2.5~3.0 m土体的年内热交换为19592.0 k J/m2,约是天然地表的230倍,其中吸热量及放热量分别为后者的1.4倍及8.7%.湖塘下部的融化夹层是深层冻土的主要热源,湖塘对下部土体放热的抑制作用是湖塘对土体产生热影响的主要原因. 相似文献
18.
19.
20.
A magnetic‐sulfonic graphene nanocomposite (G‐SO3H/Fe3O4) was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. It was used for removal of three cationic dyes: safranine T (ST), neutral red (NR), victoria blue (VB), and three anionic dyes: methyl orange, brilliant yellow, and alizarin red, from environmental water. The experimental conditions were optimized, including pH, amount of adsorbent, adsorption kinetics, adsorption isotherms, ionic strength, etc. The results show that G‐SO3H/Fe3O4 can adsorb cationic dyes more efficiently and selectively than anionic dyes at pH 6.0. In the first 10 min of adsorption time, more than 93% of the cationic dyes were removed by the sorbent. Adsorption kinetics follow the pseudo‐second‐order kinetic model well. The adsorption isotherm coincided with Langmuir and Freundlich adsorption models. The maximum adsorption capacities of G‐SO3H/Fe3O4 for ST, NR, and VB dyes were 199.3, 216.8, and 200.6 mg g?1. The adsorbed cationic dyes were eluted by using different pH values of ethanol as the solvent. The established method was simple, sensitive, and rapid, and was suitable for the adsorption of cationic dyes in environmental water. 相似文献