首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

2.
Although the north‐western coast of Western Australia is highly vulnerable to tropical cyclones and tsunamis, little is known about the geological imprint of historic and prehistoric extreme wave events in this particular area. Despite a number of site‐specific difficulties such as post‐depositional changes and the preservation potential of event deposits, both tropical cyclones and tsunamis may be inferred from the geomorphology and the stratigraphy of beach ridge sequences, washover fans and coastal lagoons or marshes. A further challenge is the differentiation between tsunami and storm deposits in the geological record, particularly where modern deposits and/or historical reports on the event are not available. This study presents a high‐resolution sedimentary record of washover events from the Ashburton River delta (Western Australia) spanning approximately the last 150 years. A detailed characterization of event deposits is provided, and a robust chronostratigraphy for the investigated washover sequence is established based on multi‐proxy sediment analyses and optically stimulated luminescence dating. Combining sedimentological, geochemical and high‐resolution optically stimulated luminescence data, event layers are assigned to known historical events and tropical cyclone deposits are separated from tsunami deposits. For the first time, the 1883 Krakatoa and 1977 Sumba tsunamis are inferred from sedimentary records of the north‐western part of Western Australia. It is demonstrated that optically stimulated luminescence applied in coastal sedimentary archives with favourable luminescence characteristics can provide accurate chronostratigraphies even on a decadal timescale. The results contribute to the data pool of tropical cyclone and tsunami deposits in Holocene stratigraphies; however, they also demonstrate how short‐lived sediment archives may be in dynamic sedimentary environments.  相似文献   

3.
Geological identification of past tsunamis is important for risk assessment studies, especially in areas where the historical record is limited or absent. The main problem when using the geological evidence is to distinguish between tsunami and storm deposits. Both are high-energy events that may leave marine traces in coastal stratigraphic sequences. At Martinhal, SW Portugal both storm surge and tsunami deposits are present at the same site within a single stratigraphic sequence, which makes it suitable to study the differences between them, excluding variations caused by local factors.

The tsunami associated with the Lisbon earthquake of November 1st 1755 AD, had a major impact on the geomorphology and sedimentology of Martinhal. It breached the barrier and laid down an extensive sheet of sand, as described in eyewitness reports. Besides the tsunami deposit the stratigraphy of Martinhal also displays evidence for storm surges that have breached and overtopped the barrier, flooding the lowland and leaving sand layers. Both marine-derived flood deposits show similar grain size characteristics and distinctive marine foraminifera. The most important differences are the rip-up clasts and boulders exclusively found in the tsunami deposit and the landward extent of the tsunami deposit that everywhere exceeds that of the storm deposits. Identification of both depositional units was only possible using a collection of different data and extensive stratigraphical information from cores as well as trenches.  相似文献   


4.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

5.
This review analyses the ostracod record in Holocene tsunami deposits, using an overview of the 2004 Indian Ocean tsunami impact on its recent populations and the associated tsunamigenic deposits, together with results from numerous investigations of other Holocene sequences. Different features such as the variability of the local assemblages, population density, species diversity, age population structure (e.g., percentages of adults and juvenile stages) or taphonomical signatures suggest that these microorganisms may be included amongst the most promising tracers of these high-energy events in marshes, lakes, lagoons or shallow marine areas.  相似文献   

6.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

7.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   

8.
Tsunami deposits are the primary source of information on (past) large tsunami events and thereby are crucial for accurate hazard assessments. Tsunami deposits studies have developed over the last three decades, but this is still a young geoscience discipline. Following the 5th International Tsunami Field Symposium in 2017 an opportunity arose to publish a Special Issue focusing on present knowledge and future research challenges. This paper aims to briefly review current state-of-the-art research, summarizing major findings and gathering relevant works that describe the progress achieved over the last three decades. In this paper the relevance of tsunami deposits, their peculiar sedimentary characteristics and their differentiation from other high energy events are presented. Especially over the last decade an incredibly high number of studies have been published on tsunami deposits, many of which are of a high quality and provide detailed literature reviews. Some of these studies represent the current progress discussed here. Challenges are also introduced, to spur a discussion on future scientific questions that can and should be addressed by tsunami geoscientists. Coupling onshore–offshore records is an area where tsunami geoscience faces some of its major challenges. Moreover, the application of non-destructive high-resolution techniques to study the internal structure and composition of tsunami deposits can also provide an opportunity to further examine deposits, and from this derive physical parameters of the forcing mechanism. Another topic is better understanding of the erosional signature of tsunami events and a continuation of the effort to better incorporate age-estimation methods by developing more accurate dating methodology. Finally, there is also the need for the improvement of empirical, forward and regressive numerical models to better contribute to the characterization of tsunami events.  相似文献   

9.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   

10.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

11.
X-ray tomography is used to analyse the grain size and sedimentary fabric of two tsunami deposits in the Marquesas Islands (French Polynesia, Pacific Ocean) which are particularly exposed to trans-Pacific tsunamis. One site is located on the southern coast of Nuku Hiva Island (Hooumi) and the other one is on the southern coast of Hiva Oa Island (Tahauku). Results are compared with other techniques such as two-dimensional image analysis on bulk samples (particle analyser) and anisotropy of magnetic susceptibility. The sedimentary fabric is characterized through three-dimensional stacks of horizontal slices (following a vertical step of 2·5 mm along the cores), while grain-size distribution is estimated from two-dimensional vertical slices (following a step of 2 mm). Four types of fabric are distinguished: (a) moderate to high angle (15 to 75°); (b) bimodal low-angle (<15°); (c) low to high angle with at least two different orientations; and (d) dispersed fabric. The fabric geometry in a tsunami deposit is not only controlled by the characteristics of the flow itself (current strength, flow regime, etc.) but also sediment concentration, deposition rate and grain-size distribution. There is a notable correlation between unimodal high-angle fabric – type (a) – and finely-skewed grain-size distribution. The two tsunami deposits studied represent two different scenarios of inundation. As demonstrated here, X-ray tomography is an essential method for characterizing past tsunamis from their deposits. The method can be applied to many other types of sediments and sedimentary rocks.  相似文献   

12.
A coupled hydrostatic and morph-dynamic model COMCOT-SED was used to investigate the morphological change in Lhok Nga bay during the 2004 Indian Ocean tsunami, and the coupled model predicted the thickness of tsunami deposits in agreement with the measured ones. The relationship between the characteristics of tsunami deposit and flow hydrodynamics was discussed in details. Phenomena such as landward thinning in deposit thickness, landward fining in grain size, and fining upwards in grain size are commonly used to identify tsunami deposits and were examined in this case study. We also discussed the effects of sediment supplies and the constraints that can be put on the earthquake parameters using the information derived from tsunami deposits. This study shows that the model presented in this paper is capable of simulating extreme tsunami events (tsunami wave height ~30?m) in a large domain and that forward models of tsunami sediment transport can be a promising tool to help tsunami geologists understand tsunami deposits.  相似文献   

13.
综述海啸沉积特征,认为岸上细粒海啸沉积物具有以下特点:(1)地层层序上向上变细、减薄;(2)水流方向的重复反向(即重复的双向水流);(3)含有撕裂的碎屑;(4)较差的分选性;(5)向陆地延伸更远;但将以上任何单一特征看成是海啸沉积的特征性依据都是不恰当的,需要将以上特征结合起来判断,才能作为海啸沉积的依据。而有关岸上巨砾的海啸或是风暴来源,至今仍争论不清,但较一致认为巨砾堤坝复合体是风暴成因。浅水碎屑海啸岩通常为夹在低能稳定状态的背景沉积粉砂—黏土层内的一套独特砂层,可以根据海啸能量的增加到衰减分为Tna—Tnd四个不同单元;而地震海啸岩通常具有震积岩—海啸岩的沉积序列;碳酸盐海啸岩则显示了与海啸入射流和回流相关的冲刷—充填结构。深海的海啸沉积作用机制仍然不清。尽管海啸传播阶段可以产生地中海A型均质岩,但深海海啸岩可能主要与海啸回流有关,如目前讨论最多的K—T撞击海啸岩。尽管目前的研究促进了对海啸的认识,但存在诸如海啸沉积机制仍然不明确,海啸沉积识别依然困难等许多问题,海啸沉积学的进一步发展将为解决这些问题提供坚实基础。  相似文献   

14.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


15.
海南岛东南部海岸砂丘风暴冲越沉积记录   总被引:1,自引:0,他引:1  
通过海南岛东南部海岸详细的古风暴学考察,在尖岭海岸发现了含有风暴冲越沉积物的海岸沙丘剖面,分别命名为JL-1和JL-2剖面,试图从海岸沙丘沉积记录中提取历史上的风暴事件信息。沉积物粒度、磁化率等参数的指标分析表明,这两个剖面含有典型的风暴冲越沉积物,利用放射性核素AMS14C测年、OSL测年分析,并结合历史文献记载,确定这些风暴沉积层是多次台风作用的产物,其形成机制与风暴浪越过海岸沙丘的堆积有关,风暴流越过沙丘顶部后不能回流,导致风暴流携带的沉积物迅速沉积。此外,依据Stockdon经验公式计算结果,该地点沉积记录所代表的最大风暴事件相当于100到200年一遇的重现期。研究表明,该处海岸沙丘冲越沉积含有南海台风强度与重现期的重要信息。  相似文献   

16.
The western Peloponnese was repeatedly hit by major tsunami impacts during historical times as reported by historical accounts and recorded in earthquake and tsunami catalogues. Geological signatures of past tsunami impacts have also been found in many coastal geological archives. During the past years, abundant geomorphological and sedimentary evidence of repeated Holocene tsunami landfall was found between Cape Katakolo and the city of Kyparissia. Moreover, neotectonic studies revealed strong crust uplift along regional faults with amounts of uplift between 13 m and 30 m since the mid-Holocene. This study focuses on the potential of direct push in situ sensing techniques to detect tsunami sediments along the Gulf of Kyparissia. Direct push measurements were conducted on the landward shores of the Kaiafa Lagoon and the former Mouria Lagoon from which sedimentary and microfaunal evidence for tsunami landfall are already known. Direct push methods helped to decipher in situ high-resolution stratigraphic records of allochthonous sand sheets that are used to document different kinds of sedimentological and geomorphological characteristics of high-energy inundation, such as abrupt increases in grain size, integration of muddy rip-up clasts and fining upward sequences which are representative of different tsunami inundation pulses. These investigations were completed by sediment coring as a base for local calibration of geophysical direct push parameters. Surface-based electrical resistivity tomography and seismic data with highly resolved vertical direct push datasets and sediment core data were all coupled in order to improve the quality of the geophysical models. Details of this methodological approach, new in palaeotsunami research, are presented and discussed, especially with respect to the question of how the obtained results may help to facilitate tracing tsunami signatures in the sedimentary record and deciphering geomorphological characteristics of past tsunami inundation. Using direct push techniques and based on sedimentary data, sedimentary signatures of two young tsunami impacts that hit the Kaiafa Lagoon were detected. Radiocarbon age control allowed the identification of these tsunami layers as candidates for the ad 551 and ad 1303 earthquake and tsunami events. For these events, there is reliable historical data on major damage on infrastructure in western Greece and on the Peloponnese. At the former Mouria Lagoon, corroborating tsunami traces were found; however, in this case it is difficult to decide whether these signatures were caused by the ad 551 or the ad 1303 event.  相似文献   

17.
Regional-scale washover deposits along the Florida Gulf and Atlantic coasts induced by multiple hurricanes in 2004 and 2005 were studied through coring, trenching, ground-penetrating radar imaging, aerial photography, and prestorm and poststorm beach-profile surveys. Erosional and depositional characteristics in different barrier-island sub-environments, including dune field, interior wetland and back-barrier bay were examined. Over the eroded dune fields, the washover deposits are characterized by an extensive horizontal basal erosional surface truncating the old dune deposits and horizontal to slightly landward-dipping stratification. Over the marshes in the barrier-island interior, the washover deposits are characterized by steep tabular bedding, with no erosion at the bottom. Overwash into the back-barrier bay produced the thickest deposits characterized by steep, prograding sigmoidal bedding. No significant erosional feature was observed at the bottom. Washover deposits within the dense interior mangrove swamp demonstrate both normal and reversed graded bedding. The washover deposits caused by hurricanes Frances (2004) and Jeanne (2004) along the southern Florida Atlantic coast barrier islands are substantially different from those along the northern Florida barrier islands caused by Ivan (2004) and Dennis (2005) in terms of regional extension, erosional features and sedimentary structures. These differences are controlled by different overall barrier-island morphology, vegetation type and density, and sediment properties. The homogeneity of sediment along the northern Florida coast makes distinguishing between washover deposits from Ivan and Dennis difficult. In contrast, along the Atlantic coast barrier islands, the two overwash events, as demonstrated by two phases of graded bedding of the bimodal sediments, are easily distinguishable.  相似文献   

18.
Tsunami are one of the major natural hazards in the Caribbean. The historical record lists 88 tsunami, from local events to teletsunami, in the time period from 1489 to 1998. This study focuses on the spatial distribution and geomorphologic evidence related to coarse littoral sediment and boulder deposition by tsunami events of Holocene age in the Southern Caribbean. At a worldwide scale, these debris deposits represent the most extensive and impressive records of Holocene paleo-tsunami so far studied. Hitherto, the Leeward Lesser Antilles, consisting of the islands of Aruba, Curaçao and Bonaire, were not known to have had tsunami affecting their coastlines. The possible contribution of tsunami to configuring coastlines (e.g. the questions of embayment development, the coastal environment changes, and the absence of Holocene fringing reefs along the windward coasts) is discussed.  相似文献   

19.
《Quaternary Science Reviews》2003,22(10-13):1085-1092
Climate changes over the Holocene have directly impacted on both coastal processes and human use of coastal areas. This paper presents results from the dating of wind blown sand deposits collected from coastal and archaeological sites in Northern Scotland. Archaeological remains are frequently found interspersed with sand deposits and represent distinct periods of occupation of settlement sites within the local landscapes. In some cases storm events sufficiently inundate the sites with sand to result in periodic abandonment. Storm events can also have dramatic results on adjacent rock coastlines, with storm boulder ridges emplaced by large waves, burying sand deposits on cliff-top sites. Work has been undertaken using a quartz SAR protocol to date sand deposition at two archaeological sites in Orkney and a cliff-top site in Shetland. These dates provide chronological information, which help to construct regional chronologies of climatic instability and environmental change and allow the SAR-OSL method to be assessed as an accurate sediment dating tool in this context.  相似文献   

20.
The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号